Skip to main content
Log in

First principles calculation of electronic, phonon and thermal properties of hydrogenated germanene

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Germanene is a basic building block of two-dimensional materials of germanium and it exhibits many unique electronic properties. It is necessary for germanene to tuning its electronic band structure for future applications. The electronic and vibrational properties of germanene, germanane, single-sided semi-hydrogenated germanene and single-sided full-hydrogenated germanene (FHgermanene) were analysed by density function theory. It was found that hydrogenation effectively leads to germanene transition from metallic to semiconductors. Meanwhile, phonon dispersion showed that germanane and FHgermanene are stable. For the same Ge/H ratio in the structure, the thermal properties of germanane and FHgermanene are consistent. The hydrogenation process provides a novel method to tune the properties of germanene with unprecedented potentials for future nanoelectronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zhang Y, Tan Y W, Stormer H L and Kim P 2005 Nature 438 201

    Article  CAS  Google Scholar 

  2. Lee C, Wei X, Kysar J W and Hone J 2008 Science 321 385

    Article  CAS  Google Scholar 

  3. Le Lay G 2015 Nat. Nanotechnol. 10 202

    Article  CAS  Google Scholar 

  4. Jose D and Datta A 2014 Acc. Chem. Res. 47 593

    Article  CAS  Google Scholar 

  5. Jose D and Datta A 2012 J. Phys. Chem. C 116 24639

    Article  CAS  Google Scholar 

  6. Ghosh M and Datta A 2018 Bull. Mater. Sci. 41 117

    Article  Google Scholar 

  7. Ni Z, Liu Q, Tang K, Zheng J, Zhou J, Qin R et al 2011 Nano Lett. 12 113

    Article  Google Scholar 

  8. Dávila M E, Xian L, Cahangirov S, Rubio A and Le Lay G 2014 New J. Phys. 16 095002

    Article  Google Scholar 

  9. Balendhran S, Walia S, Nili H, Sriram S and Bhaskaran M 2015 Small 11 640

    Article  CAS  Google Scholar 

  10. Mandal T K, Jose D, Nijamudheen A and Datta A 2014 J. Phys. Chem. C 118 12115

    Article  CAS  Google Scholar 

  11. Nijamudheen A, Bhattacharjee R, Choudhury S and Datta A 2015 J. Phys. Chem. C 119 3802

    Article  CAS  Google Scholar 

  12. Wang Y, Zheng J, Ni Z, Fei R, Liu Q, Quhe R et al 2012 Nano 7 1250037

    Article  Google Scholar 

  13. Houssa M, Scalise E, Sankaran K, Pourtois G, Afanas’ Ev V V and Stesmans A 2011 Appl. Phys. Lett. 98 223107

    Article  Google Scholar 

  14. Dekura S, Kobayashi H, Ikeda R, Maesato M, Yoshino H, Ohba M et al 2018 Angew. Chem. Int. Ed.  57 9823

    Article  CAS  Google Scholar 

  15. Seixas L, Padilha J E and Fazzio A 2014 Phys. Rev. B 89 195403

    Article  Google Scholar 

  16. Jose D, Chowdhury C and Datta A 2018 in: P Vogt and G Le Lay (eds) A vision on organosilicon chemistry and silicene (Silicene. NanoScience and Technology, Springer, Cham), p 1

  17. Musin R N and Wang X Q 2006 Phys. Rev. B 74 165308

    Article  Google Scholar 

  18. Bianco E, Butler S, Jiang S, Restrepo O D, Windl W and Goldberger J E 2013 ACS Nano 7 4414

    Article  CAS  Google Scholar 

  19. Segall M D, Lindan P J, Probert M A, Pickard C J, Hasnip P J, Clark S J et al 2002 J. Phys. Condens. Matter 14 2717

    Article  CAS  Google Scholar 

  20. Schwarz K, Blaha P and Madsen G K 2002 Comput. Phys. Commun. 147 71

    Article  Google Scholar 

  21. Fischer T H and Almlof J 1992 J. Phys. Chem. C 96 9768

    Article  CAS  Google Scholar 

  22. Chadi D J 1977 Phys. Rev. B 13 5188

    Google Scholar 

  23. Li Y F and Chen Z 2014 J. Phys. Chem. C 118 1148

    Article  CAS  Google Scholar 

  24. Wei W, Dai Y, Huang B and Jacob T 2013 Phys. Chem. Chem. Phys. 15 8789

    Article  CAS  Google Scholar 

  25. Rojas K I M, Al Rey C V, Moreno J L, David M and Arboleda Jr N B 2018 Int. J. Hydrogen Energy 43 4393

    Article  CAS  Google Scholar 

  26. Hattori A, Tanaya S, Yada K, Araidai M, Sato M, Hatsugai Y et al 2017 J. Phys. Condens. Matter 29 115302

    Article  Google Scholar 

  27. Monshi M M, Aghaei S M and Calizo I 2017 RSC Adv. 7 18900

    Article  CAS  Google Scholar 

  28. Cahangirov S, Topsakal M, Aktürk E, Şahin H and Ciraci S 2009 Phys. Rev. Lett. 102 236804

    Article  CAS  Google Scholar 

  29. Perdew J P, Burke K and Ernzerhof M 1998 Phys. Rev. Lett. 80 891

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Ji, Y. & Liu, L. First principles calculation of electronic, phonon and thermal properties of hydrogenated germanene. Bull Mater Sci 42, 157 (2019). https://doi.org/10.1007/s12034-019-1843-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-019-1843-z

Keywords

Navigation