Skip to main content
Log in

Eudragit®-based nanoparticles for controlled release through topical use

  • Review
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Eudragit® products are composed of acrylic acid, methacrylic acid, and their esters, which can be used to assemble various drug delivery systems, including polymeric nanoparticles. These nanoparticles make it possible to control the delivery of bioactive molecules (locally and release rate), which is not possible with conventional formulations. In this work, we reviewed the literature to observe the development of nanoparticles for topical application using the different types of Eudragit®. The development of nanoparticles using Eudragit® is known for its reproducible techniques that produce stable and biocompatible particles. The results show that the choice of the polymer was mainly made by the physicochemical properties, looking for polymers that can specifically enhance or avoid the interaction of the nanocarrier with the skin and mucous membranes. Nanoparticles with positive charge and nanometric size interact with physiological membranes to enhance drug efficacy, while particles with negative surface area and pH-dependent release mechanisms aim to reduce adverse effects. These different applications of Eudragit® polymeric nanoparticles could lead to novel products on the market.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Adabi M, Naghibzadeh M, Adabi M, Zarrinfard MA, Esnaashari SS, Seifalian AM, Faridi-Majidi R, TanimowoAiyelabegan H, Ghanbari H (2017) Biocompatibility and nanostructured materials: applications in nanomedicine. Artif Cells Nanomedicine Biotechnol 45:833–842. https://doi.org/10.1080/21691401.2016.1178134

    Article  CAS  Google Scholar 

  2. Balzus B, Colombo M, Sahle FF, Zoubari G, Staufenbiel S, Bodmeier R (2016) Comparison of different in vitro release methods used to investigate nanocarriers intended for dermal application. Int J Pharm 513:247–254. https://doi.org/10.1016/j.ijpharm.2016.09.033

    Article  CAS  Google Scholar 

  3. Rezende S, Stanisçuaski S, De Lucca L, Raffin A (2003) CARACTERIZAÇÃO E ESTABILIDADE FÍSICO-QUÍMICA DE SISTEMAS POLIMÉRICOS NANOPARTICULADOS PARA ADMINISTRAÇÃO DE FÁRMACOS. Quim Nova 26:726–737

    Article  Google Scholar 

  4. Mora-Huertas CE, Fessi H, Elaissari A (2010) Polymer-based nanocapsules for drug delivery. Int J Pharm 385:113–142. https://doi.org/10.1016/j.ijpharm.2009.10.018

    Article  CAS  Google Scholar 

  5. Kim DK, Dobson J (2009) Nanomedicine for targeted drug delivery. J Mater Chem 19:6294–6307. https://doi.org/10.1039/b902711b

    Article  CAS  Google Scholar 

  6. Food and Drug Administration (FDA) (2014) Guidance for industry: safety of nanomaterials in cosmetic products, food drug adm 1–16. FDA-2011-D-0489. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/guidance-industry-safety-nanomaterials-cosmetic-products

  7. Scientific Committee on Consumer Safety (SCCS) (2019) Guidance on the safety assessment of nanomaterials in cosmetics. 1611/19. https://doi.org/10.2875/40446

  8. Mech A, Wohlleben W, Ghanem A, Hodoroaba VD, Weigel S, Babick F, Brüngel R, Friedrich CM, Rasmussen K, Rauscher H (2020) Nano or not nano? A structured approach for identifying nanomaterials according to the European Commission’s Definition. Small 16, 2002228:1–16. https://doi.org/10.1002/smll.202002228

  9. Zoabi A, Touitou E, Margulis K (2021) Recent advances in nanomaterials for dermal and transdermal applications. Colloid Interfaces 5:18. https://doi.org/10.3390/colloids5010018

  10. Khezri K, Saeedi M, MalekiDizaj S (2018) Application of nanoparticles in percutaneous delivery of active ingredients in cosmetic preparations. Biomed Pharmacother 106:1499–1505. https://doi.org/10.1016/j.biopha.2018.07.084

    Article  CAS  Google Scholar 

  11. Crucho CIC, Barros MT (2017) Polymeric nanoparticles: a study on the preparation variables and characterization methods. Mater Sci Eng C 80:771–784. https://doi.org/10.1016/j.msec.2017.06.004

    Article  CAS  Google Scholar 

  12. Salvioni L, Morelli L, Ochoa E, Labra M, Fiandra L, Palugan L, Prosperi D, Colombo M (2021) The emerging role of nanotechnology in skincare. Adv Colloid Interface Sci 293:102437. https://doi.org/10.1016/j.cis.2021.102437

    Article  CAS  Google Scholar 

  13. Patra CN, Priya R, Swain S, Kumar Jena G, Panigrahi KC, Ghose D (2017) Pharmaceutical significance of Eudragit: A review. Futur J Pharm Sci 3:33–45. https://doi.org/10.1016/j.fjps.2017.02.001

    Article  Google Scholar 

  14. Antonow MB, Lorenzoni R, Barbosa GM, Ourique AF, Gomes P, Raffin RP (2016) Development and physicochemical characterization of desonide-loaded nanocapsule suspensions. Adv Mater Sci Eng 7395896:12 https://doi.org/10.1155/2016/7395896

  15. Prusty A, Gupta BK (2017) Role of chitosan and Eudragit in polymer-based extended release matrix tablets—a review. Int J Pharm Sci Res 8:4973–4982. https://doi.org/10.13040/IJPSR.0975-8232.8(12).4973-82

  16. Verma P, Gupta RN, Jha AK, Pandey R (2013) Development, in vitro and in vivo characterization of Eudragit RL 100 nanoparticles for improved ocular bioavailability of acetazolamide. Drug Deliv 20:269–276. https://doi.org/10.3109/10717544.2013.834417

    Article  CAS  Google Scholar 

  17. Hao S, Wang B, Wang Y, Zhu L, Wang B, Guo T (2013) Preparation of Eudragit L 100–55 enteric nanoparticles by a novel emulsion diffusion method. Colloids Surfaces B Biointerfaces 108:127–133. https://doi.org/10.1016/j.colsurfb.2013.02.036

    Article  CAS  Google Scholar 

  18. Fontana MC, Beckenkamp A, Buffon A, Beck RCR (2014) Controlled release of raloxifene by nanoencapsulation: effect on in vitro antiproliferative activity of human breast cancer cells. Int J Nanomedicine 9:2979–2991. https://doi.org/10.2147/IJN.S62857

    Article  CAS  Google Scholar 

  19. Gandhi A, Jana S, Sen KK (2014) In-vitro release of acyclovir loaded Eudragit RLPO® nanoparticles for sustained drug delivery. Int J Biol Macromol 67:478–482. https://doi.org/10.1016/j.ijbiomac.2014.04.019

    Article  CAS  Google Scholar 

  20. Torres-Flores G, Nazende GT, Emre TA (2019) Preparation of Fenofibrate loaded Eudragit L100 nanoparticles by nanoprecipitation method. Mater Today Proc 13:428–435. https://doi.org/10.1016/j.matpr.2019.03.176

    Article  CAS  Google Scholar 

  21. Pereira MP, de Gomes MG, Izoton JC, Nakama KA, dos Santos RB, Pinto Savall AS, Ramalho JB, Roman SS, Luchese C, Cibin FW, Pinton S, Haas SE (2019) Cationic and anionic unloaded polymeric nanocapsules: toxicological evaluation in rats shows low toxicity. Biomed Pharmacother 116:109014. https://doi.org/10.1016/j.biopha.2019.109014

    Article  CAS  Google Scholar 

  22. Wang X, Wang M, Wang Q, Yuan Y, Hao Q, Bi Y, He Y, Zhao J, Hao J (2022) Fabrication and in vitro/in vivo characterization of Eudragit enteric nanoparticles loaded with indomethacin. Chem Pap 76:1119–1133. https://doi.org/10.1007/s11696-021-01921-3

    Article  CAS  Google Scholar 

  23. Yu Y-Q, Yang X, Wu X-F, Fan Y-B (2021) Enhancing permeation of drug molecules across the skin via delivery in nanocarriers: novel strategies for effective transdermal applications. Front Bioeng Biotechnol 9:1–17. https://doi.org/10.3389/fbioe.2021.646554

    Article  CAS  Google Scholar 

  24. Guterres SS, Alves MP, Pohlmann AR (2007) Polymeric nanoparticles, nanospheres and nanocapsules, for cutaneous applications. Drug Target Insights 2:117739280700200. https://doi.org/10.1177/117739280700200002

    Article  Google Scholar 

  25. Pohlmann AR, Detoni CB, Paese K, Coradini K, Beck RCR, Guterres SS (2016) Polymeric Nanocapsules for Topical Delivery. In: Dragicevic, N., Maibach, H. (eds) Percutaneous Penetration Enhancers Chemical Methods in Penetration Enhancement, Springer Berlin Heidelberg, Berlin. Heidelberg. 201–221. https://doi.org/10.1007/978-3-662-47862-2_13

  26. Balzus B, Sahle FF, Hönzke S, Gerecke C, Schumacher F, Hedtrich S, Kleuser B, Bodmeier R (2017) Formulation and ex vivo evaluation of polymeric nanoparticles for controlled delivery of corticosteroids to the skin and the corneal epithelium. Eur J Pharm Biopharm 115:122–130. https://doi.org/10.1016/j.ejpb.2017.02.001

    Article  CAS  Google Scholar 

  27. Rençber S, Karavana SY, Yılmaz FF, Eraç B, Nenni M, Ozbal S, Pekçetin Ç, Gurer-Orhan H, Hoşgör Limoncu M, Güneri P, Ertan G (2016) Development, characterization, and in vivo assessment of mucoadhesive nanoparticles containing fluconazole for the local treatment of oral candidiasis. Int J Nanomedicine 11:2641–2653. https://doi.org/10.2147/IJN.S103762

  28. El-Nahas AE, Allam AN, Abdelmonsif DA, El-Kamel AH (2017) Silymarin-loaded Eudragit nanoparticles: formulation, characterization, and hepatoprotective and toxicity evaluation. AAPS PharmSciTech 18:3076–3086. https://doi.org/10.1208/s12249-017-0799-9

    Article  CAS  Google Scholar 

  29. Goswami A, Patel N, Bhatt V, Raval M, Kundariya M, Sheth N (2022) Lycopene loaded polymeric nanoparticles for prostate cancer treatment: formulation, optimization using Box-behnken design and cytotoxicity studies. J Drug Deliv Sci Technol 67:102930. https://doi.org/10.1016/j.jddst.2021.102930

    Article  CAS  Google Scholar 

  30. Turanlı Y, Acartürk F (2022) Preparation and characterization of colon-targeted pH/Time-dependent nanoparticles using anionic and cationic polymethacrylate polymers. Eur J Pharm Sci 171:106122. https://doi.org/10.1016/j.ejps.2022.106122

    Article  CAS  Google Scholar 

  31. dos Chavez PS, Ourique AF, Frank LA, Pohlmann AR, Guterres SS, Beck RCR (2017) Carvedilol-loaded nanocapsules: mucoadhesive properties and permeability across the sublingual mucosa. Eur J Pharm Biopharm 114:88–95. https://doi.org/10.1016/j.ejpb.2017.01.007

    Article  CAS  Google Scholar 

  32. Jahangir MA, Khan R, Sarim Imam S (2018) Formulation of sitagliptin-loaded oral polymeric nano scaffold: process parameters evaluation and enhanced anti-diabetic performance. Artif Cells Nanomed Biotech 46:66–78. https://doi.org/10.1080/21691401.2017.1411933

    Article  CAS  Google Scholar 

  33. Asfour MH, Mohsen AM (2018) Formulation and evaluation of pH-sensitive rutin nanospheres against colon carcinoma using HCT-116 cell line. J Adv Res 9:17–26. https://doi.org/10.1016/j.jare.2017.10.003

    Article  CAS  Google Scholar 

  34. Catalan-Figueroa J, Boisset CB, Jara MO, Flores ME, Moreno-Villoslada I, Fiedler JL, Morales JO (2018) A mechanistic approach for the optimization of loperamide loaded nanocarriers characterization: diafiltration and mathematical modeling advantages. Eur J Pharm Sci 125:215–222. https://doi.org/10.1016/j.ejps.2018.10.002

    Article  CAS  Google Scholar 

  35. Giaretta M, Bianchin MD, Kanis LA, Contri RV, Külkamp-Guerreiro IC (2019) Development of innovative polymer-based matricial nanostructures for ritonavir oral administration. J Nanomater 8619819:10. https://doi.org/10.1155/2019/8619819

  36. Sunoqrot S, Abujamous L (2019) pH-sensitive polymeric nanoparticles of quercetin as a potential colon cancer-targeted nanomedicine. J Drug Deliv Sci Technol 52:670–676. https://doi.org/10.1016/j.jddst.2019.05.035

    Article  CAS  Google Scholar 

  37. Krieser K, Emanuelli J, Daudt RM, Bilatto S, Willig JB, Guterres SS, Pohlmann AR, Buffon A, Correa DS, Külkamp-Guerreiro IC (2020) Taste-masked nanoparticles containing Saquinavir for pediatric oral administration. Mater Sci Eng C 117:111315. https://doi.org/10.1016/j.msec.2020.111315

  38. Nejati L, Maram NS, Ahmady AZ (2021) Preparation of Gentamicin sulfate nanoparticles using Eudragit RS-100 and evaluation of their physicochemical properties. Int J Nanosci 20:1–13. https://doi.org/10.1142/S0219581X21500496

    Article  Google Scholar 

  39. Benson AC, Watkinson HAE (2012) Topical and transdermal drug delivery: principlesand practice. Skin Structure, Function, and Permeation. John Wiley & Sons, Inc., Hoboken. 2011019937:1–22. https://doi.org/10.1002/9781118140505

  40. Wu L, Zhang J, Watanabe W (2011) Physical and chemical stability of drug nanoparticles. Adv Drug Deliv Rev 63:456–469. https://doi.org/10.1016/j.addr.2011.02.001

    Article  CAS  Google Scholar 

  41. Contri RV, Fiel LA, Alnasif N, Pohlmann AR, Guterres SS, Schäfer-Korting M (2016) Skin penetration and dermal tolerability of acrylic nanocapsules: influence of the surface charge and a chitosan gel used as vehicle. Int J Pharm 507:12–20. https://doi.org/10.1016/j.ijpharm.2016.03.046

    Article  CAS  Google Scholar 

  42. Beber TC, De Andrade DF, Dos Santos Chaves P, Pohlmann AR, Guterres SS, Ruver Beck RC (2016) Cationic polymeric nanocapsules as a strategy to target dexamethasone to viable epidermis: skin penetration and permeation studies. J Nanosci Nanotechnol 16:1331–1338. https://doi.org/10.1166/jnn.2016.11670

    Article  CAS  Google Scholar 

  43. Contri RV, Kulkamp-Guerreiro IC, da Silva SJ, Frank LA, Pohlmann AR, Guterres SS (2016) Nanoencapsulation of rose-hip oil prevents oil oxidation and allows obtainment of gel and film topical formulations. AAPS PharmSciTech 17:863–871. https://doi.org/10.1208/s12249-015-0379-9

    Article  CAS  Google Scholar 

  44. Rosa P, Friedrich ML, dos Santos J, Librelotto DRN, Maurer LH, Emanuelli T, De C, da Silva B, Adams AIH (2019) Desonide nanoencapsulation with açai oil as oil core: physicochemical characterization, photostability study and in vitro phototoxicity evaluation. J Photochem Photobiol B Biol 199:111606. https://doi.org/10.1016/j.jphotobiol.2019.111606

    Article  CAS  Google Scholar 

  45. Cervi VF, Saccol CP, Sari MHM, Martins CC, da Rosa LS, Ilha BD, Soares FZ, Luchese C, Wilhelm EA, Cruz L (2021) Pullulan film incorporated with nanocapsules improves pomegranate seed oil anti-inflammatory and antioxidant effects in the treatment of atopic dermatitis in mice. Int J Pharm 609:121144. https://doi.org/10.1016/j.ijpharm.2021.121144

  46. de Araújo Lopes A, da Fonseca FN, Rocha TM, de Freitas LB, Araújo EVO, Wong DVT, Lima Júnior RCP, Leal LKAM (2018) Eugenol as a promising molecule for the treatment of dermatitis: antioxidant and anti-inflammatory activities and its nanoformulation. Oxid Med Cell Longev 2018:1–13. https://doi.org/10.1155/2018/8194849

    Article  CAS  Google Scholar 

  47. Dong P, Sahle FF, Lohan SB, Saeidpour S, Albrecht S, Teutloff C, Bodmeier R, Unbehauen M, Wolff C, Haag R, Lademann J, Patzelt A, Schäfer-Korting M, Meinke MC (2019) pH-sensitive Eudragit® L 100 nanoparticles promote cutaneous penetration and drug release on the skin. J Control Release 295:214–222. https://doi.org/10.1016/j.jconrel.2018.12.045

    Article  CAS  Google Scholar 

  48. Breiding MJ (2014) Nanoparticles for drug delivery to the anterior segment of the eye. Physiol Behav 63:1–18. https://doi.org/10.1016/j.addr.2017.04.001.Nanoparticles

    Article  Google Scholar 

  49. Duxfield L, Sultana R, Wang R, Englebretsen V, Deo S, Swift S, Rupenthal I, Al-Kassas R (2016) Development of gatifloxacin-loaded cationic polymeric nanoparticles for ocular drug delivery. Pharm Dev Technol 21:172–179. https://doi.org/10.3109/10837450.2015.1091839

    Article  CAS  Google Scholar 

  50. Quinteros DA, Ferreira LM, Schaffazick SR, Palma SD, Allemandi DA, Cruz L (2016) Novel polymeric nanoparticles intended for ophthalmic administration of Acetazolamide. J Pharm Sci 105:3183–3190. https://doi.org/10.1016/j.xphs.2016.06.023

    Article  CAS  Google Scholar 

  51. Kesarla R, Tank T, Vora PA, Shah T, Parmar S, Omri A (2016) Preparation and evaluation of nanoparticles loaded ophthalmic in situ gel. Drug Deliv 23:2363–2370. https://doi.org/10.3109/10717544.2014.987333

    Article  CAS  Google Scholar 

  52. Morsi N, Ghorab D, Refai H, Teba H (2016) Ketoroloac tromethamine loaded nanodispersion incorporated into thermosensitive in situ gel for prolonged ocular delivery. Int J Pharm 506:57–67. https://doi.org/10.1016/j.ijpharm.2016.04.021

    Article  CAS  Google Scholar 

  53. Mohammadi G, Mirzaeei S, Taghe S, P. (2019) Mohammadi, Preparation and evaluation of Eudragit® L100 nanoparticles loaded impregnated with kt tromethamine loaded PVA-HEC insertions for ophthalmic drug delivery. Adv Pharm Bull 9:593–600. https://doi.org/10.15171/apb.2019.068

    Article  CAS  Google Scholar 

  54. Castro BFM, De G, Fulgêncio O, Domingos LC, Cotta OAL, Silva-Cunha A, Fialho SL (2020) Positively charged polymeric nanoparticles improve ocular penetration of tacrolimus after topical administration. J. Drug Deliv. Sci. Technol 60:101912. https://doi.org/10.1016/j.jddst.2020.101912

    Article  CAS  Google Scholar 

  55. de Lima JA, Paines TC, Motta MH, Weber WB, dos Santos SS, Cruz L, C. de B. da Silva, (2017) Novel Pemulen/Pullulan blended hydrogel containing clotrimazole-loaded cationic nanocapsules: evaluation of mucoadhesion and vaginal permeation. Mater Sci Eng C 79:886–893. https://doi.org/10.1016/j.msec.2017.05.030

    Article  CAS  Google Scholar 

  56. Pandey M, Choudhury H, Abdul-Aziz A, Bhattamisra SK, Gorain B, Carine T, Toong TW, Yi NJ, Yi LW (2021) Promising drug delivery approaches to treat microbial infections in the vagina: a recent update. Polymers (Basel) 23:1–65. https://doi.org/10.3390/polym13010026

    Article  CAS  Google Scholar 

  57. Englert AV, Verdi CM, Santos RCV, Cruz L, Sari MHM (2020) Diphenyl Diselenide and Clotrimazole Co-loaded into Eudragit® RS 100 nanocapsules formulation has superior antioxidant potential and promising anti-candida activity. Brazilian Arch Biol Technol 63:e20200087. https://doi.org/10.1590/1678-4324-2020200087

  58. dos Reis FP, Rigo GV, Nogueira CW, Tasca T, Sari MHM, Cruz L (2022) Locust Bean Gum Nano-Based hydrogel for vaginal delivery of diphenyl diselenide in the treatment of Trichomoniasis: formulation characterization and in vitro biological evaluation. Pharmaceutics 14(10):2112. https://doi.org/10.3390/pharmaceutics14102112

  59. Osmari BF, Giuliani LM, Reolon JB, Rigo GV, Tasca T, Cruz L (2020) Gellan gum-based hydrogel containing nanocapsules for vaginal indole-3-carbinol delivery in trichomoniasis treatment. Eur J Pharm Sci 151:105379. https://doi.org/10.1016/j.ejps.2020.105379

    Article  CAS  Google Scholar 

  60. Melo CM, Cardoso JF, Perassoli FB, de Oliveira Neto AS, Pinto LM, de Freitas Marques MB, da Nova Mussel W, Magalhães JT, de Lima Moura SA, de Freitas Araújo MG, da Silva GR (2020) Amphotericin B-loaded Eudragit RL100 nanoparticles coated with hyaluronic acid for the treatment of vulvovaginal candidiasis. Carbohydr Polym 230:115608. https://doi.org/10.1016/j.carbpol.2019.115608

    Article  CAS  Google Scholar 

  61. Giri LHC (2016) Namita; Oh, Byeongtaek, Stimuli-sensitive nanoparticles for multiple anti-HIV microbicides. J Nanoparticles Res. https://doi.org/10.1007/s11051-016-3440-3

    Article  Google Scholar 

  62. Ali ME, Lamprecht A (2013) Polyethylene glycol as an alternative polymer solvent for nanoparticle preparation. Int J Pharm 456:135–142. https://doi.org/10.1016/j.ijpharm.2013.07.077

    Article  CAS  Google Scholar 

  63. Jeevanandam J, Barhoum A, Chan YS, Dufresne A, Danquah MK (2018) Review on nanoparticles and nanostructured materials: History, sources, toxicity and regulations. Beilstein J Nanotechnol 9:1050–1074. https://doi.org/10.3762/bjnano.9.98

    Article  Google Scholar 

  64. Saifi MA, Khan W, Godugu C (2018) Cytotoxicity of nanomaterials: using nanotoxicology to address the safety concerns of nanoparticles. Pharm Nanotechnol 6:3–16. https://doi.org/10.2174/2211738505666171023152928

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior–Brasil (CAPES)–Finance Code 001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henrique Rodrigues Marcelino.

Ethics declarations

Conflict of interest

The authors declare no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cardoso, A.M.L., Oliveira, E.E., Machado, B.A.S. et al. Eudragit®-based nanoparticles for controlled release through topical use. J Nanopart Res 25, 32 (2023). https://doi.org/10.1007/s11051-023-05678-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-023-05678-6

Keywords

Navigation