Skip to main content

Advertisement

Log in

Recent Update on Nanoemulsion Impregnated Hydrogel: a Gleam into the Revolutionary Strategy for Diffusion-Controlled Delivery of Therapeutics

  • Review Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Since earlier times, dermatological remedies have been utilized to treat diseases associated with pain, irritation, and skin conditions. Compared to other routes of drug delivery, topical delivery of drugs offers several benefits. Scientists are investigating different alterations in dosage forms in addition to existing topical formulations such as ointments, gels, creams, lotions, and ointments to significantly improve the permeation of drugs and enhance the pharmacological efficacy of medications that are poorly absorbed via the skin. Conventional formulations have a plethora of problems viz. poor absorption, no target specificity, low spreadability, and inadequate bioavailability which leads the researchers toward developing novel formulations like nanoemulsions. The nanoemulsion can enhance the gradient in concentration and thermodynamic movement toward the epidermis and enhance the penetration of its constituents. However, due to its difficult application, nanoemulsion’s lower viscosity limited its use in transdermal delivery. Thus, the development of nanoemulsion-based hydrogels has shown to be a successful strategy for removing obstacles from existing drug formulations. The simple application, expedient spreadability, non-stickiness, safety, and effectiveness of nanoemulsion-based hydrogel have led to substantial growth in their research in recent years. This review gives a brief idea about the prevalence of skin diseases, skin as an obstacle for drug delivery, and recent research insights to combat these obstacles. The work highlights the mechanism of drug release via nanoemulsion, hydrogels, and nanoemulsion-based hydrogels with reference to recent research on hydrophobic and hydrophilic drugs.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The data and materials used during the study are available from the corresponding author upon reasonable request.

Abbreviations

NE:

Nanoemulsion

TJ:

Tight junctions

TJDP:

Tight junctions disprupting proteins

ALA:

Aminolevulinic acid

5-ALA:

5-Aminolevulinic acid

MALA:

Methyl-aminolevulinic acid

DOTAP:

1,2-Dioleyl-3-trimethylammonium propane

LF:

Labrafac

TA:

Triacetin

MCT:

Medium chain triglycerides

CEL:

Cremophor EL

References

  1. Joseph N, Kumar G, Nelliyanil M. Skin diseases and conditions among students of a medical college in southern India. Indian Dermatol Online J. 2014;5:19. https://doi.org/10.4103/2229-5178.126023.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Abolfotouh MA, Bahamdan K. Skin disorders among blind and deaf male students in Southwestern Saudi Arabia. Ann Saudi Med. 2000;20:161–4. https://doi.org/10.5144/0256-4947.2000.161.

    Article  CAS  PubMed  Google Scholar 

  3. Ayer J. Acne: more than skin deep. Postgrad Med J. 2006;82:500–6. https://doi.org/10.1136/pgmj.2006.045377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Andersen LK, Davis MDP. The epidemiology of skin and skin-related diseases: a review of population-based studies performed by using the Rochester Epidemiology Project. Mayo Clin Proc. 2013;88:1462–7. https://doi.org/10.1016/j.mayocp.2013.08.018.

    Article  PubMed  Google Scholar 

  5. Karimkhani C, Dellavalle RP, Coffeng LE, Flohr C, Hay RJ, Langan SM, et al. Global skin disease morbidity and mortality an update from the global burden of disease study 2013. JAMA Dermatol 2017;153. https://doi.org/10.1001/jamadermatol.2016.5538.

  6. Seth D, Cheldize K, Brown D, Freeman EE. Global burden of skin disease: inequities and innovations. Curr Dermatol Rep 2017;6. https://doi.org/10.1007/s13671-017-0192-7.

  7. Hay RJ, Johns NE, Williams HC, Bolliger IW, Dellavalle RP, Margolis DJ, et al. The global burden of skin disease in 2010: an analysis of the prevalence and impact of skin conditions. J Investig Dermatol 2014;134. https://doi.org/10.1038/jid.2013.446.

  8. Rahamathulla MP. Prevalence of skin disorders and associated socio-economic factors among primary school children in the Eastern region of Saudi Arabia. J Pak Med Assoc 2019;69:1175–80.

  9. Balasubramanian P, Anil A. Epidemiological study of skin disorders in Andaman and Nicobar Islands. Indian J Dermatol. 2021;66:454. https://doi.org/10.4103/ijd.IJD_30_20.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kavita A, Thakur JS, Narang T. The burden of skin diseases in India: Global Burden of Disease Study 2017. Indian J Dermatol Venereol Leprol 2021;0:1. https://doi.org/10.25259/IJDVL_978_20.

  11. Gorzelanny C, Mess C, Schneider SW, Huck V, Brandner JM. Skin barriers in dermal drug delivery: which barriers have to be overcome and how can we measure them? Pharmaceutics. 2020;12:684. https://doi.org/10.3390/pharmaceutics12070684.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Lee A-Y. Molecular mechanism of epidermal barrier dysfunction as primary abnormalities. Int J Mol Sci. 2020;21:1194. https://doi.org/10.3390/ijms21041194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ishida-Yamamoto A, Igawa S, Kishibe M, Honma M. Clinical and molecular implications of structural changes to desmosomes and corneodesmosomes. J Dermatol. 2018;45:385–9. https://doi.org/10.1111/1346-8138.14202.

    Article  CAS  PubMed  Google Scholar 

  14. van Smeden J, Bouwstra JA. Stratum corneum lipids: their role for the skin barrier function in healthy subjects and atopic dermatitis patients, 2016. 8–26. https://doi.org/10.1159/000441540.

  15. Parhi R, Suresh P, Patnaik S. Physical means of stratum corneum barrier manipulation to enhance transdermal drug delivery. Curr Drug Deliv. 2015;12:122–38. https://doi.org/10.2174/1567201811666140515145329.

    Article  CAS  PubMed  Google Scholar 

  16. Sklar LR, Burnett CT, Waibel JS, Moy RL, Ozog DM. Laser assisted drug delivery: a review of an evolving technology. Lasers Surg Med. 2014;46:249–62. https://doi.org/10.1002/lsm.22227.

    Article  PubMed  Google Scholar 

  17. Asfour MH. Advanced trends in protein and peptide drug delivery: a special emphasis on aquasomes and microneedles techniques. Drug Deliv Transl Res. 2021;11:1–23. https://doi.org/10.1007/s13346-020-00746-z.

    Article  PubMed  Google Scholar 

  18. Rancan F, Giulbudagian M, Jurisch J, Blume-Peytavi U, Calderón M, Vogt A. Drug delivery across intact and disrupted skin barrier: identification of cell populations interacting with penetrated thermoresponsive nanogels. Eur J Pharm Biopharm. 2017;116:4–11. https://doi.org/10.1016/j.ejpb.2016.11.017.

    Article  CAS  PubMed  Google Scholar 

  19. del Río-Sancho S, Lapteva M, Sonaje K, Böhler C, Ling V, Boehncke W-H, et al. Targeted cutaneous delivery of etanercept using Er:YAG fractional laser ablation. Int J Pharm. 2020;580:119234. https://doi.org/10.1016/j.ijpharm.2020.119234.

    Article  CAS  PubMed  Google Scholar 

  20. Brewer MG, Anderson EA, Pandya RP, de Benedetto A, Yoshida T, Hilimire TA, et al. Peptides derived from the tight junction protein CLDN1 disrupt the skin barrier and promote responsiveness to an epicutaneous vaccine. J Investig Dermatol. 2020;140:361-369.e3. https://doi.org/10.1016/j.jid.2019.06.145.

    Article  CAS  PubMed  Google Scholar 

  21. Beier L-S, Rossa J, Woodhouse S, Bergmann S, Kramer H, Protze J, et al. Use of modified clostridium perfringens enterotoxin fragments for claudin targeting in liver and skin cells. Int J Mol Sci. 2019;20:4774. https://doi.org/10.3390/ijms20194774.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yuki T, Komiya A, Kusaka A, Kuze T, Sugiyama Y, Inoue S. Impaired tight junctions obstruct stratum corneum formation by altering polar lipid and profilaggrin processing. J Dermatol Sci. 2013;69:148–58. https://doi.org/10.1016/j.jdermsci.2012.11.595.

    Article  CAS  PubMed  Google Scholar 

  23. Abdayem R, Callejon S, Portes P, Kirilov P, Demarne F, Pirot F, et al. Modulation of transepithelial electric resistance (TEER) in reconstructed human epidermis by excipients known to permeate intestinal tight junctions. Exp Dermatol. 2015;24:686–91. https://doi.org/10.1111/exd.12750.

    Article  CAS  PubMed  Google Scholar 

  24. Breitkreutz D, Koxholt I, Thiemann K, Nischt R. Skin basement membrane: the Foundation of Epidermal Integrity—BM functions and diverse roles of bridging molecules nidogen and perlecan. Biomed Res Int. 2013;2013:1–16. https://doi.org/10.1155/2013/179784.

    Article  CAS  Google Scholar 

  25. Nyström A, Bruckner-Tuderman L. Matrix molecules and skin biology. Semin Cell Dev Biol. 2019;89:136–46. https://doi.org/10.1016/j.semcdb.2018.07.025.

    Article  CAS  PubMed  Google Scholar 

  26. Glentis A, Gurchenkov V, Vignjevic DM. Assembly, heterogeneity, and breaching of the basement membranes. Cell Adh Migr. 2014;8:236–45. https://doi.org/10.4161/cam.28733.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Oh JW, Kloepper J, Langan EA, Kim Y, Yeo J, Kim MJ, et al. A guide to studying human hair follicle cycling in vivo. J Investig Dermatol. 2016;136:34–44. https://doi.org/10.1038/JID.2015.354.

    Article  CAS  PubMed  Google Scholar 

  28. Zorn-Kruppa M, Vidal-y-Sy S, Houdek P, Wladykowski E, Grzybowski S, Gruber R, et al. Tight Junction barriers in human hair follicles – role of claudin-1. Sci Rep. 2018;8:12800. https://doi.org/10.1038/s41598-018-30341-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Patzelt A, Lademann J. Recent advances in follicular drug delivery of nanoparticles. Expert Opin Drug Deliv. 2020;17:49–60. https://doi.org/10.1080/17425247.2020.1700226.

    Article  CAS  PubMed  Google Scholar 

  30. Meesters AA, Nieboer MJ, Almasian M, Georgiou G, de Rie MA, Verdaasdonk RM, et al. Drug penetration enhancement techniques in ablative fractional laser assisted cutaneous delivery of indocyanine green. Lasers Surg Med. 2019;51:709–19. https://doi.org/10.1002/lsm.23088.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Pelikh O, Keck CM. Hair follicle targeting and dermal drug delivery with curcumin drug nanocrystals—essential influence of excipients. Nanomaterials. 2020;10:2323. https://doi.org/10.3390/nano10112323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lademann J, Jacobi U, Surber C, Weigmann H-J, Fluhr JW. The tape stripping procedure – evaluation of some critical parameters. Eur J Pharm Biopharm. 2009;72:317–23. https://doi.org/10.1016/j.ejpb.2008.08.008.

    Article  CAS  PubMed  Google Scholar 

  33. Gehl J. Electroporation: theory and methods, perspectives for drug delivery, gene therapy and research. Acta Physiol Scand. 2003;177:437–47. https://doi.org/10.1046/j.1365-201X.2003.01093.x.

    Article  CAS  PubMed  Google Scholar 

  34. Hu L, Batheja P, Meidan V, Michniak-Kohn BB. Iontophoretic transdermal drug delivery. Handbook of non-invasive drug delivery systems, Elsevier; 2010, p. 95–118. https://doi.org/10.1016/B978-0-8155-2025-2.10004-6.

  35. Iontophoresis - Physiopedia n.d. https://www.physio-pedia.com/Iontophoresis (Accessed 9 May 2023).

  36. Definition of thermal ablation - NCI Dictionary of Cancer Terms - NCI n.d. https://www.cancer.gov/publications/dictionaries/cancer-terms/def/thermal-ablation (Accessed 9 May 2023).

  37. Waghule T, Singhvi G, Dubey SK, Pandey MM, Gupta G, Singh M, et al. Microneedles: a smart approach and increasing potential for transdermal drug delivery system. Biomed Pharmacother. 2019;109:1249–58. https://doi.org/10.1016/j.biopha.2018.10.078.

    Article  CAS  PubMed  Google Scholar 

  38. Stachowiak JC, Li TH, Arora A, Mitragotri S, Fletcher DA. Dynamic control of needle-free jet injection. J Control Release. 2009;135:104–12. https://doi.org/10.1016/j.jconrel.2009.01.003.

    Article  CAS  PubMed  Google Scholar 

  39. Hussain A, Samad A, Singh SK, Ahsan MN, Haque MW, Faruk A, et al. Nanoemulsion gel-based topical delivery of an antifungal drug: in vitro activity and in vivo evaluation. Drug Deliv. 2016;23:642–57. https://doi.org/10.3109/10717544.2014.933284.

    Article  CAS  PubMed  Google Scholar 

  40. WEISS SC. Conventional topical delivery systems. Dermatol Ther 2011;24:471–6. https://doi.org/10.1111/j.1529-8019.2012.01458.x.

  41. Kumari A, Jain A, Hurkat P, Verma A, Jain SK. Microsponges: a pioneering tool for biomedical applications. Crit Rev Ther Drug Carrier Syst. 2016;33:77–105. https://doi.org/10.1615/CritRevTherDrugCarrierSyst.v33.i1.40.

    Article  PubMed  Google Scholar 

  42. Adepu S, Ramakrishna S. Controlled drug delivery systems: current status and future directions. Molecules. 2021;26:5905. https://doi.org/10.3390/molecules26195905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Teichmann A, Heuschkel S, Jacobi U, Presse G, Neubert RHH, Sterry W, et al. Comparison of stratum corneum penetration and localization of a lipophilic model drug applied in an o/w microemulsion and an amphiphilic cream. Eur J Pharm Biopharm. 2007;67:699–706. https://doi.org/10.1016/j.ejpb.2007.04.006.

    Article  CAS  PubMed  Google Scholar 

  44. Gupta M, Agrawal U, Vyas SP. Nanocarrier-based topical drug delivery for the treatment of skin diseases. Expert Opin Drug Deliv. 2012;9:783–804. https://doi.org/10.1517/17425247.2012.686490.

    Article  CAS  PubMed  Google Scholar 

  45. Castro GA, Coelho ALLR, Oliveira CA, Mahecha GAB, Oréfice RL, Ferreira LAM. Formation of ion pairing as an alternative to improve encapsulation and stability and to reduce skin irritation of retinoic acid loaded in solid lipid nanoparticles. Int J Pharm. 2009;381:77–83. https://doi.org/10.1016/j.ijpharm.2009.07.025.

    Article  CAS  PubMed  Google Scholar 

  46. Gupta M, Vyas SP. Development, characterization and in vivo assessment of effective lipidic nanoparticles for dermal delivery of fluconazole against cutaneous candidiasis. Chem Phys Lipids. 2012;165:454–61. https://doi.org/10.1016/j.chemphyslip.2012.01.006.

    Article  CAS  PubMed  Google Scholar 

  47. Bawarski WE, Chidlowsky E, Bharali DJ, Mousa SA. Emerging nanopharmaceuticals. Nanomedicine. 2008;4:273–82. https://doi.org/10.1016/j.nano.2008.06.002.

    Article  CAS  PubMed  Google Scholar 

  48. Benson HAE, Grice JE, Mohammed Y, Namjoshi S, Roberts MS. Topical and transdermal drug delivery: from simple potions to smart technologies. Curr Drug Deliv. 2019;16:444–60. https://doi.org/10.2174/1567201816666190201143457.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Indrati O, Martien R, Rohman A, Nugroho A. Development of nanoemulsion-based hydrogel containing andrographolide: physical properties and stability evaluation. J Pharm Bioallied Sci. 2020;12:816. https://doi.org/10.4103/jpbs.JPBS_174_20.

    Article  Google Scholar 

  50. Toftdal MS, Taebnia N, Kadumudi FB, Andresen TL, Frogne T, Winkel L, et al. Oxygen releasing hydrogels for beta cell assisted therapy. Int J Pharm. 2021;602:120595. https://doi.org/10.1016/j.ijpharm.2021.120595.

    Article  CAS  PubMed  Google Scholar 

  51. Shikha Y, Jitender M. Hydrogels: a review. Int J Pharm Life Sci. 2020;11:6711–7.

    Google Scholar 

  52. dos Santos AM, Carvalho SG, Araujo VHS, Carvalho GC, Gremião MPD, Chorilli M. Recent advances in hydrogels as strategy for drug delivery intended to vaginal infections. Int J Pharm. 2020;590:119867. https://doi.org/10.1016/j.ijpharm.2020.119867.

    Article  CAS  PubMed  Google Scholar 

  53. Shamloo A, Aghababaie Z, Afjoul H, Jami M, Bidgoli MR, Vossoughi M, et al. Fabrication and evaluation of chitosan/gelatin/PVA hydrogel incorporating honey for wound healing applications: an in vitro, in vivo study. Int J Pharm. 2021;592:120068. https://doi.org/10.1016/j.ijpharm.2020.120068.

    Article  CAS  PubMed  Google Scholar 

  54. Sultana N, Akhtar J, Badruddeen, Irfan Khan M, Ahmad U, Arif M, et al. Nanoemulgel: for promising topical and systemic delivery. Drug Development Life Cycle [Working Title], IntechOpen; 2022. https://doi.org/10.5772/intechopen.103878.

  55. Parisa G, Soliman M-S. Hydrogels as drug delivery systems; pros and cons. Trends Pharm Sci. 2019;5:7–24.

    Google Scholar 

  56. Lin C-C, Metters AT. Hydrogels in controlled release formulations: network design and mathematical modeling. Adv Drug Deliv Rev. 2006;58:1379–408. https://doi.org/10.1016/j.addr.2006.09.004.

    Article  CAS  PubMed  Google Scholar 

  57. Zustiak SP, Boukari H, Leach JB. Solute diffusion and interactions in cross-linked poly(ethylene glycol) hydrogels studied by Fluorescence Correlation Spectroscopy. Soft Matter. 2010;6:3609. https://doi.org/10.1039/c0sm00111b.

    Article  CAS  Google Scholar 

  58. Peppas N. Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm. 2000;50:27–46. https://doi.org/10.1016/S0939-6411(00)00090-4.

    Article  CAS  PubMed  Google Scholar 

  59. Lin C-C, Anseth KS. PEG hydrogels for the controlled release of biomolecules in regenerative medicine. Pharm Res. 2009;26:631–43. https://doi.org/10.1007/s11095-008-9801-2.

    Article  CAS  PubMed  Google Scholar 

  60. Ravaine V, Ancla C, Catargi B. Chemically controlled closed-loop insulin delivery. J Control Release. 2008;132:2–11. https://doi.org/10.1016/j.jconrel.2008.08.009.

    Article  CAS  PubMed  Google Scholar 

  61. Sun W, Ma X, Wei X, Xu Y. Nano composite emulsion for sustained drug release and improved bioavailability. Pharm Res. 2014;31:2774–83. https://doi.org/10.1007/s11095-014-1374-7.

    Article  CAS  PubMed  Google Scholar 

  62. Li X, Liu S, Wang Q, Lu R. Nanoemulsions as novel oral carriers of stiripentol: insights into the protective effect and absorption enhancement. Int J Nanomedicine 2015:4937. https://doi.org/10.2147/IJN.S87471.

  63. Muheem A, Shakeel F, Jahangir MA, Anwar M, Mallick N, Jain GK, et al. A review on the strategies for oral delivery of proteins and peptides and their clinical perspectives. Saudi Pharm J. 2016;24:413–28. https://doi.org/10.1016/j.jsps.2014.06.004.

    Article  PubMed  Google Scholar 

  64. Ensign LM, Cone R, Hanes J. Oral drug delivery with polymeric nanoparticles: the gastrointestinal mucus barriers. Adv Drug Deliv Rev. 2012;64:557–70. https://doi.org/10.1016/j.addr.2011.12.009.

    Article  CAS  PubMed  Google Scholar 

  65. Darwis Y, Ali Khan A, Mudassir J, Mohtar N. Advanced drug delivery to the lymphatic system: lipid-based nanoformulations. Int J Nanomedicine 2013:2733. https://doi.org/10.2147/IJN.S41521.

  66. Singh Y, Meher JG, Raval K, Khan FA, Chaurasia M, Jain NK, et al. Nanoemulsion: concepts, development and applications in drug delivery. J Control Release. 2017;252:28–49. https://doi.org/10.1016/j.jconrel.2017.03.008.

    Article  CAS  PubMed  Google Scholar 

  67. Garti N, Frenkel M, Shwartz R. Multiple emulsions. PART II: proposed technique to overcome unpleasant taste of drugs. J Dispers Sci Technol. 1983;4:237–52. https://doi.org/10.1080/01932698308943369.

    Article  CAS  Google Scholar 

  68. Liu Q, Huang H, Chen H, Lin J, Wang Q. Food-grade nanoemulsions: preparation, stability and application in encapsulation of bioactive compounds. Molecules. 2019;24:4242. https://doi.org/10.3390/molecules24234242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Thompson KL, Derry MJ, Hatton FL, Armes SP. Long-term stability of n -alkane-in-water pickering nanoemulsions: effect of aqueous solubility of droplet phase on Ostwald ripening. Langmuir. 2018;34:9289–97. https://doi.org/10.1021/acs.langmuir.8b01835.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. McClements DJ, Gumus CE. Natural emulsifiers — biosurfactants, phospholipids, biopolymers, and colloidal particles: molecular and physicochemical basis of functional performance. Adv Colloid Interface Sci. 2016;234:3–26. https://doi.org/10.1016/j.cis.2016.03.002.

    Article  CAS  PubMed  Google Scholar 

  71. Jaiswal M, Dudhe R, Sharma PK. Nanoemulsion: an advanced mode of drug delivery system. 3 Biotech. 2015;5:123–7. https://doi.org/10.1007/s13205-014-0214-0.

    Article  PubMed  Google Scholar 

  72. Kumar M, Bishnoi RS, Shukla AK, Jain CP. Techniques for formulation of nanoemulsion drug delivery system: a review. Prev Nutr Food Sci. 2019;24:225–34. https://doi.org/10.3746/pnf.2019.24.3.225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Karthik P, Ezhilarasi PN, Anandharamakrishnan C. Challenges associated in stability of food grade nanoemulsions. Crit Rev Food Sci Nutr. 2017;57:1435–50. https://doi.org/10.1080/10408398.2015.1006767.

    Article  CAS  PubMed  Google Scholar 

  74. Mu H, Holm R, Müllertz A. Lipid-based formulations for oral administration of poorly water-soluble drugs. Int J Pharm. 2013;453:215–24. https://doi.org/10.1016/j.ijpharm.2013.03.054.

    Article  CAS  PubMed  Google Scholar 

  75. Qian C, McClements DJ. Formation of nanoemulsions stabilized by model food-grade emulsifiers using high-pressure homogenization: factors affecting particle size. Food Hydrocoll. 2011;25:1000–8. https://doi.org/10.1016/j.foodhyd.2010.09.017.

    Article  CAS  Google Scholar 

  76. Chatterjee B, Hamed Almurisi S, Ahmed Mahdi Dukhan A, Mandal UK, Sengupta P. Controversies with self-emulsifying drug delivery system from pharmacokinetic point of view. Drug Deliv. 2016;23:3639–52. https://doi.org/10.1080/10717544.2016.1214990.

    Article  CAS  PubMed  Google Scholar 

  77. Dokania S, Joshi AK. Self-microemulsifying drug delivery system (SMEDDS) – challenges and road ahead. Drug Deliv. 2015;22:675–90. https://doi.org/10.3109/10717544.2014.896058.

    Article  CAS  PubMed  Google Scholar 

  78. Feeney OM, Crum MF, McEvoy CL, Trevaskis NL, Williams HD, Pouton CW, et al. 50 years of oral lipid-based formulations: provenance, progress and future perspectives. Adv Drug Deliv Rev. 2016;101:167–94. https://doi.org/10.1016/j.addr.2016.04.007.

    Article  CAS  PubMed  Google Scholar 

  79. Belhaj N, Arab-Tehrany E, Linder M. Oxidative kinetics of salmon oil in bulk and in nanoemulsion stabilized by marine lecithin. Process Biochem. 2010;45:187–95. https://doi.org/10.1016/j.procbio.2009.09.005.

    Article  CAS  Google Scholar 

  80. Neslihan Gursoy R, Benita S. Self-emulsifying drug delivery systems (SEDDS) for improved oral delivery of lipophilic drugs. Biomed Pharmacother. 2004;58:173–82. https://doi.org/10.1016/j.biopha.2004.02.001.

    Article  CAS  PubMed  Google Scholar 

  81. Mohsin K, Long MA, Pouton CW. Design of lipid-based formulations for oral administration of poorly water-soluble drugs: precipitation of drug after dispersion of formulations in aqueous solution. J Pharm Sci. 2009;98:3582–95. https://doi.org/10.1002/jps.21659.

    Article  CAS  PubMed  Google Scholar 

  82. Yuan Y, Gao Y, Zhao J, Mao L. Characterization and stability evaluation of β-carotene nanoemulsions prepared by high pressure homogenization under various emulsifying conditions. Food Res Int. 2008;41:61–8. https://doi.org/10.1016/j.foodres.2007.09.006.

    Article  CAS  Google Scholar 

  83. Madene A, Jacquot M, Scher J, Desobry S. Flavour encapsulation and controlled release - a review. Int J Food Sci Technol. 2006;41:1–21. https://doi.org/10.1111/j.1365-2621.2005.00980.x.

    Article  CAS  Google Scholar 

  84. Rehman FU, Shah KU, Shah SU, Khan IU, Khan GM, Khan A. From nanoemulsions to self-nanoemulsions, with recent advances in self-nanoemulsifying drug delivery systems (SNEDDS). Expert Opin Drug Deliv. 2017;14:1325–40. https://doi.org/10.1080/17425247.2016.1218462.

    Article  CAS  PubMed  Google Scholar 

  85. Shaker DS, Ishak RAH, Ghoneim A, Elhuoni MA. Nanoemulsion: a review on mechanisms for the transdermal delivery of hydrophobic and hydrophilic drugs. Sci Pharm. 2019;87:17. https://doi.org/10.3390/scipharm87030017.

    Article  CAS  Google Scholar 

  86. Syed Azhar SNA, Ashari SE, Salim N. Development of a kojic monooleate-enriched oil-in-water nanoemulsion as a potential carrier for hyperpigmentation treatment. Int J Nanomedicine. 2018;13:6465–79. https://doi.org/10.2147/IJN.S171532.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Tong K, Zhao C, Sun D. Formation of nanoemulsion with long chain oil by W/O microemulsion dilution method. Colloids Surf A Physicochem Eng Asp. 2016;497:101–8. https://doi.org/10.1016/j.colsurfa.2016.02.039.

    Article  CAS  Google Scholar 

  88. Harwansh RK, Patra KC, Pareta SK, Singh J, Rahman MA. Nanoemulsions as vehicles for transdermal delivery of glycyrrhizin. Braz J Pharm Sci. 2011;47:769–78. https://doi.org/10.1590/S1984-82502011000400014.

    Article  CAS  Google Scholar 

  89. Nakabayashi K, Amemiya F, Fuchigami T, Machida K, Takeda S, Tamamitsu K, et al. Highly clear and transparent nanoemulsion preparation under surfactant-free conditions using tandem acoustic emulsification. Chem Commun. 2011;47:5765. https://doi.org/10.1039/c1cc10558b.

    Article  CAS  Google Scholar 

  90. Wu H, Ramachandran C, Weiner ND, Roessler BJ. Topical transport of hydrophilic compounds using water-in-oil nanoemulsions. Int J Pharm. 2001;220:63–75. https://doi.org/10.1016/S0378-5173(01)00671-8.

    Article  CAS  PubMed  Google Scholar 

  91. Wu H, Ramachandran C, Bielinska AU, Kingzett K, Sun R, Weiner ND, et al. Topical transfection using plasmid DNA in a water-in-oil nanoemulsion. Int J Pharm. 2001;221:23–34. https://doi.org/10.1016/S0378-5173(01)00672-X.

    Article  CAS  PubMed  Google Scholar 

  92. Samira SA, Ali MT, Fakhr SF, Daneshamuz S, Moghimi H. Pharmaceutical nanoemulsions and their potential topical and transdermal applications. Iran J Pharm Sci. 2011;7:139–50.

    Google Scholar 

  93. Abd E, Namjoshi S, Mohammed YH, Roberts MS, Grice JE. Synergistic skin penetration enhancer and nanoemulsion formulations promote the human epidermal permeation of caffeine and naproxen. J Pharm Sci. 2016;105:212–20. https://doi.org/10.1002/jps.24699.

    Article  CAS  PubMed  Google Scholar 

  94. Wais M, Abdus S, Iram N, Khale A. Formulation development ex-vivo and in-vivo evaluation of nanoemulsion for transdermal delivery of glibenclamide. Int J Pharm Pharm Sci. 2013;5:747–54.

    CAS  Google Scholar 

  95. Aggarwal G, Dhawan B, Harikumar S. Enhanced transdermal permeability of piroxicam through novel nanoemulgel formulation. Int J Pharm Investig. 2014;4:65. https://doi.org/10.4103/2230-973X.133053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Lucca LG, de Matos SP, Borille BT, Dias D de O., Teixeira HF, Veiga VF, et al. Determination of β-caryophyllene skin permeation/retention from crude copaiba oil (Copaifera multijuga Hayne) and respective oil-based nanoemulsion using a novel HS-GC/MS method. J Pharm Biomed Anal. 2015;104:144–8. https://doi.org/10.1016/j.jpba.2014.11.013.

    Article  CAS  PubMed  Google Scholar 

  97. Kim JH, Ko JA, Kim JT, Cha DS, Cho JH, Park HJ, et al. Preparation of a capsaicin-loaded nanoemulsion for improving skin penetration. J Agric Food Chem. 2014;62:725–32. https://doi.org/10.1021/jf404220n.

    Article  CAS  PubMed  Google Scholar 

  98. Eid AM. Preparation, characterization and anti-inflammatory activity of Swietenia macrophylla nanoemulgel. J Nanomed Nanotechnol 2014;05. https://doi.org/10.4172/2157-7439.1000190.

  99. Mou D, Chen H, Du D, Mao C, Wan J, Xu H, et al. Hydrogel-thickened nanoemulsion system for topical delivery of lipophilic drugs. Int J Pharm. 2008;353:270–6. https://doi.org/10.1016/j.ijpharm.2007.11.051.

    Article  CAS  PubMed  Google Scholar 

  100. Padmadevi C, Mohamed AT, Keleb EI, Assad E, Eid AM, Issa YS, et al. Nanoemulsion and nanoemulgel as a topical formulation. IOSR J Pharm. 2015;5:43–7.

    Google Scholar 

  101. Sultana N, Akhtar J, Badruddeen, Irfan Khan M, Ahmad U, Arif M, et al. Nanoemulgel: for promising topical and systemic delivery. Drug Development Life Cycle, IntechOpen; 2022. https://doi.org/10.5772/intechopen.103878.

  102. Ali A, Ansari V, Ahmad U, Akhtar J, Jahan A. Nanoemulsion: an advanced vehicle for efficient drug delivery. Drug Res. 2017;67:617–31. https://doi.org/10.1055/s-0043-115124.

    Article  CAS  Google Scholar 

  103. Petit C, Batool F, Stutz C, Anton N, Klymchenko A, Vandamme T, et al. Development of a thermosensitive statin loaded chitosan-based hydrogel promoting bone healing. Int J Pharm. 2020;586:119534. https://doi.org/10.1016/j.ijpharm.2020.119534.

    Article  CAS  PubMed  Google Scholar 

  104. Rambharose S, Kalhapure RS, Govender T. Nanoemulgel using a bicephalous heterolipid as a novel approach to enhance transdermal permeation of tenofovir. Colloids Surf B Biointerfaces. 2017;154:221–7. https://doi.org/10.1016/j.colsurfb.2017.03.040.

    Article  CAS  PubMed  Google Scholar 

  105. Mahtab A, Anwar M, Mallick N, Naz Z, Jain GK, Ahmad FJ. Transungual delivery of ketoconazole nanoemulgel for the effective management of onychomycosis. AAPS PharmSciTech. 2016;17:1477–90. https://doi.org/10.1208/s12249-016-0488-0.

    Article  CAS  PubMed  Google Scholar 

  106. Kaur R, Ajitha M. Transdermal delivery of fluvastatin loaded nanoemulsion gel: preparation, characterization and in vivo anti-osteoporosis activity. Eur J Pharm Sci. 2019;136:104956. https://doi.org/10.1016/j.ejps.2019.104956.

    Article  CAS  PubMed  Google Scholar 

  107. Choudhury H, Gorain B, Pandey M, Chatterjee LA, Sengupta P, Das A, et al. Recent update on nanoemulgel as topical drug delivery system. J Pharm Sci. 2017;106:1736–51. https://doi.org/10.1016/j.xphs.2017.03.042.

    Article  CAS  PubMed  Google Scholar 

  108. Arora R, Aggarwal G, Harikumar SL, Kaur K. Nanoemulsion based hydrogel for enhanced transdermal delivery of ketoprofen. Adv Pharm. 2014;2014:1–12. https://doi.org/10.1155/2014/468456.

    Article  Google Scholar 

  109. Sampathi S, Mankala SK, Wankar J, Dodoala S. Nanoemulsion based hydrogels of itraconazole for transdermal drug delivery. J Sci Ind Res (India). 2015;74:88–92.

    CAS  Google Scholar 

  110. Sharma P, Tailang M. Design, optimization, and evaluation of hydrogel of primaquine loaded nanoemulsion for malaria therapy. Futur J Pharm Sci. 2020;6:26. https://doi.org/10.1186/s43094-020-00035-z.

    Article  Google Scholar 

  111. Patel S, Jain P, Parkhe G. Formulation and evaluation of acyclovir loaded novel nano-emulsion gel for topical treatment of herpes simplex viral infections. J Drug Deliv Ther. 2018;8:265–70. https://doi.org/10.22270/jddt.v8i5-s.1968.

    Article  CAS  Google Scholar 

  112. Heidarifard M, Taghavi E, Anarjan N. Preparation of nano-emulsion-based hydrogels conjugated curcumin as model functional lipid bioactive compound. J Am Oil Chem Soc. 2021;98:697–709. https://doi.org/10.1002/aocs.12473.

    Article  CAS  Google Scholar 

  113. Algahtani MS, Ahmad MZ, Ahmad J. Nanoemulsion loaded polymeric hydrogel for topical delivery of curcumin in psoriasis. J Drug Deliv Sci Technol. 2020;59:101847. https://doi.org/10.1016/j.jddst.2020.101847.

    Article  CAS  Google Scholar 

  114. Demisli S, Mitsou E, Pletsa V, Xenakis A, Papadimitriou V. Development and study of nanoemulsions and nanoemulsion-based hydrogels for the encapsulation of lipophilic compounds. Nanomaterials. 2020;10:2464. https://doi.org/10.3390/nano10122464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Rashid SA, Bashir S, Naseem F, Farid A, Rather IA, Hakeem KR. Olive oil based methotrexate loaded topical nanoemulsion gel for the treatment of imiquimod induced psoriasis-like skin inflammation in an animal model. Biology (Basel). 2021;10:1121. https://doi.org/10.3390/biology10111121.

    Article  CAS  PubMed  Google Scholar 

  116. Cai K, Liu Y, Yue Y, Liu Y, Guo F. Essential oil nanoemulsion hydrogel with anti-biofilm activity for the treatment of infected wounds. Polymers (Basel). 2023;15:1376. https://doi.org/10.3390/polym15061376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Safety and efficacy study for the field-directed treatment of actinic keratosis (AK) with photodynamic therapy (PDT) - Full Text View - ClinicalTrials.gov n.d. https://clinicaltrials.gov/ct2/show/NCT01966120?term=nanoemulsion+gel&draw=2&rank=2 (Accessed 15 Oct 2022).

  118. Photodynamic therapy for lentigo maligna using 5-aminolevulinic acid nanoemulsion as a light sensitizing cream - Full Text View - ClinicalTrials.gov n.d. https://clinicaltrials.gov/ct2/show/NCT02685592?term=nanoemulsion+gel&draw=2&rank=5 (Accessed 15 Oct 2022).

  119. Clinical assessment of voriconazole self nano emulsifying drug delivery system intermediate gel - Full Text View - ClinicalTrials.gov n.d. https://clinicaltrials.gov/ct2/show/NCT04110860?term=nanoemulsion+gel&draw=2&rank=3 (accessed 15 Oct 2022).

  120. Evaluation of safety and efficacy of BF-200 ALA for the treatment of actinic keratosis with photodynamic therapy - Full Text View - ClinicalTrials.gov n.d. https://clinicaltrials.gov/ct2/show/NCT02799069?term=nanoemulsion+gel&draw=2&rank=1 (accessed 15 Oct 2022).

  121. Clinical assessment of itraconazole self nano emulsifying drug delivery system intermediate gel - Full Text View - ClinicalTrials.gov n.d. https://clinicaltrials.gov/ct2/show/NCT04110834?term=nanoemulsion+gel&draw=2&rank=4 (Accessed 15 Oct 2022).

  122. CN107303263B - Tripterygium glycosides nanoemulsion gel and preparation method thereof - Google Patents n.d. https://patents.google.com/patent/CN107303263B/en?q=nanoemulsion+gel&oq=nanoemulsion+gel (Accessed 15 Oct 2022).

  123. CN103301188A - Nanoemulsion gel made of radix sophorae flavescentis and earthworm and preparation method of nanoemulsion gel - Google Patents n.d. https://patents.google.com/patent/CN103301188A/en?q=nanoemulsion+gel&oq=nanoemulsion+gel (Accessed 15 Oct 2022).

  124. CN112263542A - Desonide nanoemulsion gel composition and preparation method thereof - Google Patents n.d. https://patents.google.com/patent/CN112263542A/en?q=nanoemulsion+gel&oq=nanoemulsion+gel (Accessed 15 Oct 2022).

  125. CN111803445B - Preparation method of high-stability nano emulsion and nano emulsion gel - Google Patents n.d. https://patents.google.com/patent/CN111803445B/en?q=nanoemulsion+gel&oq=nanoemulsion+gel (Accessed 15 Oct 2022).

  126. CN113952292A - Rosemary essential oil nanoemulsion gel, preparation method and application thereof - Google Patents n.d. https://patents.google.com/patent/CN113952292A/en?q=nanoemulsion+gel&oq=nanoemulsion+gel (Accessed 15 Oct 2022).

  127. CN110664733A - Hyaluronic acid nanoemulsion gel for nursing female vagina - Google Patents n.d. https://patents.google.com/patent/CN110664733A/en?q=nanoemulsion+gel&oq=nanoemulsion+gel (Accessed 15 Oct 2022).

  128. CN112641667B - High-stability transparent ceramide nanoemulsion gel and preparation and application thereof - Google Patents n.d. https://patents.google.com/patent/CN112641667B/en?q=nanoemulsion+gel&oq=nanoemulsion+gel (Accessed 16 Oct 2022).

  129. CN108159102B - Preparation method and application of wormwood extract nano-emulsion gel - Google Patents n.d. https://patents.google.com/patent/CN108159102B/en?q=nanoemulsion+gel&oq=nanoemulsion+gel (Accessed 16 Oct 2022).

  130. CN112842940B - Preparation and application of combined nano emulsion gel containing oregano oil - Google Patents n.d. https://patents.google.com/patent/CN112842940B/en?q=nanoemulsion+gel&oq=nanoemulsion+gel&page=1 (Accessed 16 Oct 2022).

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study. The original draft was prepared by Jatin Rathee and Sakshi Malhotra. Conceptualization, supervision, reviewing, and editing were done by Manisha Pandey and Neha Jain. Reviewing and editing were done by Shreya Kaul and Upendra Nagaich. Adding resources viz figures was done by Gaurav Gupta.

Corresponding authors

Correspondence to Manisha Pandey or Neha Jain.

Ethics declarations

Ethics Approval and Consent to Participate

This is only an observational and theoretical study. No ethical approval is required.

Consent for Publication

The authors give their consent for the publication.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rathee, J., Malhotra, S., Pandey, M. et al. Recent Update on Nanoemulsion Impregnated Hydrogel: a Gleam into the Revolutionary Strategy for Diffusion-Controlled Delivery of Therapeutics. AAPS PharmSciTech 24, 151 (2023). https://doi.org/10.1208/s12249-023-02611-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-023-02611-x

Keywords

Navigation