Skip to main content

Advertisement

Log in

Preparation and electrochemical performance of nanostructured Co3O4 particles

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The nanostructured Co3O4 particles were prepared by a simple and inexpensive precipitation method, which can be used as electrode materials in pseudocapacitive energy storage devices. The effect of temperature on the crystal structure and morphology of the material was discussed to obtain a suitable condition for the fabrication of the electrodes. The results showed that the Co3O4 calcined at 400 °C (C4) with an average particle size of 34.1 ± 4.0 nm is suitable for electrode fabrication. This is due to the superior electrical conductivity and high purity of the phase structure with a larger specific surface area and porosity compared to the samples calcined at 600 and 800 °C. Moreover, the different oxidation states of Co ions in electrochemical reactions are the main factor for the high capacitance values of the sample. The maximum specific capacitance of 115.3 F/g at a current density of 1 A/g was achieved by the C4 sample. The charge/discharge stability measurements with maximum a of 5000 cycles showed that the sample can achieve excellent retention of specific capacitance of almost 100% for up to 1900 cycles at a current density of 5 A/g.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The authors declare that all relevant data are included in the article and/or its supplementary information files.

References

  1. Jule LT, Dejene FB, Ali AG, Roro KT, Hegazy A, Allam NK, El Shenawy E (2016) Wide visible emission and narrowing band gap in Cd-doped ZnO nanopowders synthesized via sol-gel route. J Alloys Compounds 687:920–926

    Article  CAS  Google Scholar 

  2. Ahmed F, Arshi N, Dwivedi S, Koo BH, Azam A, Alsharaeh E (2016) Low temperature growth of ZnO nanotubes for fluorescence quenching detection of DNA. J Mater Sci Mater Med 27:189–189

    Article  Google Scholar 

  3. Lee WC, Fang Y, Turner JFC, Bedi JS, Perry CC, He H, Qian R, Chen Q (2016) An enhanced gas ionization sensor from Y-doped vertically aligned conductive ZnO nanorods. Sens Actuator B: Chem 237:724–732

    Article  CAS  Google Scholar 

  4. Yang T, Chen M, Kong Q, Luo X, Jiao K (2017) Toward DNA electrochemical sensing by free-standing ZnO nanosheets grown on 2D thin-layered MoS2. Biosens Bioelectron 89:538–544

    Article  CAS  Google Scholar 

  5. Makhlouf SA, Bakr ZH, Aly KI, Moustafa MS (2013) Structural, electrical and optical properties of Co3O4 nanoparticles. Superlattice Microst 64:107–117

    Article  CAS  Google Scholar 

  6. Twilton J, Le C, Zhang P, Shaw MH, Evans RW, MacMillan DWC (2017) The merger of transition metal and photocatalysis. Nat Rev Chem 1:0052

    Article  CAS  Google Scholar 

  7. Bai S, Liu H, Sun J, Tian Y, Luo R, Li D, Chen A (2015) Mechanism of enhancing the formaldehyde sensing properties of Co3O4 via Ag modification. RSC Adv 5:48619–48625

    Article  CAS  Google Scholar 

  8. Salavati-Niasari M, Khansari A, Davar F (2009) Synthesis and characterization of cobalt oxide nanoparticles by thermal treatment process. Inorg Chim Acta 362:4937–4942

    Article  CAS  Google Scholar 

  9. Lu Y, Deng B, Liu Y, Wang J, Tu Z, Lu J, Xiao X, Xu G (2021) Nanostructured Co3O4 for achieving high-performance supercapacitor. Mater Lett 285:129101

    Article  CAS  Google Scholar 

  10. Wadekar KF, Nemade KR, Waghuley SA (2017) Chemical synthesis of cobalt oxide (Co3O4) nanoparticles using Co-precipitation method. Res J Chem Sci 7:53–55

    CAS  Google Scholar 

  11. Meher SK, Rao GR (2011) Ultra layered Co3O4 for high-performance supercapacitor applications. J Phys Chem C 115:5646–15654

    Article  Google Scholar 

  12. Li Y, Wu H, Wu Y, Li Q (2017) Facile synthesis of mesoporous Co3O4 nanowires for application in supercapacitors. J Mater Sci Mater Electron 28:16826–16835

    Article  CAS  Google Scholar 

  13. Lin KS, Chowdhury S (2010) Synthesis, characterization and application of 1-D cerium oxide nanomaterials. Int J Mol Sci 11:3226–3251

    Article  CAS  Google Scholar 

  14. Kurajica S, Minga I, Gulis M, Mandit V, Van Simcic I (2016) High surface area ceria nanoparticles via hydrothermal synthesis experiment design. J Nanomater 10:1–8

    Article  Google Scholar 

  15. AnandhaBabu G, Ravi G, Hayakawa Y, Kumaresavanji M (2015) Synthesis and calcinations effects on size analysis of Co3O4 nanospheres and their superparamagnetic behaviors. J Magn Magn Mater 375:184–193

    Article  CAS  Google Scholar 

  16. Naveen AN, Selladurai S (2014) Investigation on physiochemical properties of Mn substituted spinel cobalt oxide for supercapacitor applications. Electrochim Acta 125:404–414

    Article  CAS  Google Scholar 

  17. Stella C, Soundararajan N, Ramachandran K (2015) Structural, optical, and magnetic properties of Mn and Fe-doped Co3O4 nanoparticles. AIP Adv 5:087104

    Article  Google Scholar 

  18. Patil D, Patil P, Subramanian V, Joy PA, Potdar HS (2010) Highly sensitive and fast responding CO sensor based on Co3O4 nanorods. Talanta 81:37–43

    Article  CAS  Google Scholar 

  19. Huang H, Zhu W, Tao X, Xia Y, Yu Z, Fang J, Gan Y, Zhang W (2012) Nanocrystal-constructed mesoporous single-crystalline Co3O4 nanobelts with superior rate capability for advanced lithium-ion batteries. ACS Appl Mater Interfaces 4:5974–5980

    Article  CAS  Google Scholar 

  20. Roginskaya YE, Morozova O, Lubnin E, Ulitina YE, Lopukhova G, Trasatti S (1997) Characterization of bulk and surface composition of CoxNi1-xOy mixed oxides for electrocatalysis. Langmuir 13:4621–4627

    Article  CAS  Google Scholar 

  21. Lü Y, Zhan W, He Y, Wang Y, Kong X, Kuang Q, Xie Z, Zheng L (2014) MOF-templated synthesis of porous Co3O4 concave nanocubes with high specific surface area and their gas sensing properties. ACS Appl Mater Interfaces 6:4186–4195

    Article  Google Scholar 

  22. Shou Z, Zhang Y, Wang Z, Wei W, Teng W, Shi J, Xiong R (2008) Electronic structure studies of the spinel CoFe2O4 by X-ray photoelectron spectroscopy. Appl Sur Sci 254:6972–6975

    Article  Google Scholar 

  23. Li N, Du K, Liu G, Xie Y, Zhou G, Zhu J, Li F, Cheng HM (2013) Effects of oxygen vacancies on the electrochemical performance of tin oxide. J Mater Chem A 1:1536–1539

    Article  CAS  Google Scholar 

  24. Park JS, Shin DO, Lee CS, Young-Gi L, Kim JY, Kim KM, Shin K (2018) Mesoporous perforated Co3O4 nanoparticles with a thin carbon layer for high performance Li-ion battery anodes. Electrochim Acta 264:376–385

    Article  CAS  Google Scholar 

  25. Kanjana N, Maiaugree W, Poolcharuansin P, Laokul P (2020) Size controllable synthesis and photocatalytic performance of mesoporous TiO2 hollow spheres. J Mater Technol 48:105–113

    Article  Google Scholar 

  26. Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854

    Article  CAS  Google Scholar 

  27. Wang Y, Lei Y, Li J, Gu L, Yuan H, Xiao D (2014) Synthesis of 3D-nanonet hollow structured Co3O4 for high capacity supercapacitor. ACS Appl Mater Interfaces 6:6739–6747

    Article  CAS  Google Scholar 

  28. Lima-Tenório MK, Ferreira CS, Rebelo QHF, Brambilla de Souza RF, Passos RR, Gómes Pineda EA, Pocrifka LA (2018) Pseudo capacitance properties of Co3O4 nanoparticles synthesized using a modified sol-gel method. Mater Res 21(2):1–7

    Article  Google Scholar 

  29. Cao L, Xu F, Liang YY, Li HL (2004) Preparation of the novel nanocomposite Co(OH)2/ultra-stable Y zeolite and its application as a supercapacitor with high energy density. Adv Mater 16:1853–1857

    Article  CAS  Google Scholar 

  30. Casella IG, Gatta M (2002) Study of the electrochemical deposition and properties of cobalt oxide species in citrate alkaline solutions. J Electroanal Chem 534:31–38

    Article  CAS  Google Scholar 

  31. Svegl F, Orel B, Hutchins M, Kalcher K (1996) Structural and spectroelectrochemical investigations of sol-gel derived electrochromic spinel Co3O4 films. J Electrochem Soc 143:1532–1539

    Article  CAS  Google Scholar 

  32. Zhang F, Hao L, Zhang L, Zhang X (2011) Solid-State thermolysis preparation of Co3O4 nano/micro superstructures from metal-organic framework for supercapacitors. Int J Electrochem Sci 6:2943–2954

    CAS  Google Scholar 

  33. Tummala R, Guduru RK, Mohanty PS (2012) Nanostructured Co3O4 electrodes for supercapacitor applications from plasma spray technique. J Power Sources 209:44–51

    Article  CAS  Google Scholar 

  34. Wang DW, Li F, Liu M, Lu GQ, Cheng HM (2008) 3D aperiodic hierarchical porous graphitic carbon material for high rate electrochemical capacitive energy storage. Angew Chem Int Edition 120:379–382

    Article  Google Scholar 

  35. Shan Y, Gao L (2007) Formation and characterization of multi-walled carbon nanotubes/Co3O4 nanocomposites for supercapacitors. Mater Chem Phys 103(2–3):206–210

    Article  CAS  Google Scholar 

  36. Xiong S, Yuan C, Zhang X, Xi B, Qian Y (2009) Controllable synthesis of mesoporous Co3O4 nanostructures with tunable morphology for application in supercapacitors. Chem Eur J 15:5320–5326

    Article  CAS  Google Scholar 

  37. Jagadale AD, Dubal DP, Lokhande CD (2012) Electrochemical behavior of potentiodynamically deposited cobalt oxyhydroxide (CoOOH) thin films for supercapacitor application. Mate Res Bull 47:672–676

    Article  CAS  Google Scholar 

  38. Duan Y, Hu T, Yang L, Gao J, Guo S, Hou M, Ye X (2019) Facile fabrication of electroactive microporous Co3O4 through microwave plasma etching for supercapacitors. J Alloys Compounds 771:156–161

    Article  CAS  Google Scholar 

  39. Zhang F, Yuan C, Zhu J, Wang J, Zhang X, Lou XW (2013) Flexible films derived from electrospun carbon nanofibers incorporated with Co3O4 hollow nanoparticles as self-supported electrodes for electrochemical capacitors. Adv Funct Mater 23:3909–3915

    Article  CAS  Google Scholar 

  40. Wang D, Wang Q, Wang T (2011) Morphology-controllable synthesis of cobalt oxalates and their conversion to mesoporous Co3O4 nanostructures for application in supercapacitors. Inorg Chem 50:6482–6492

    Article  CAS  Google Scholar 

  41. Danhua G, Hongbo G, Jiaqing W, Junwei Z, Yue P, Xueqin Cao C, Hongwei G (2014) Porous nano-structured Co3O4 anode materials generated from coordination-driven self-assembled aggregates for advanced lithium-ion batteries. Nanoscale 6:9689–9694

    Article  Google Scholar 

  42. Bin W, Shifeng W, Yuanyuan T, Yaxiong J, Wei L, Xiao-Ying L (2019) Hydrothermal synthesis of mesoporous Co3O4 nanorods as high-capacity anode materials for lithium-ion batteries. Energy Procedia 158:5293–5298

    Article  Google Scholar 

  43. Liu J, Jiang J, Bosman M, Fan HJ (2012) Three-dimensional tubular arrays of MnO2-NiO nanoflakes with high areal pseudo capacitance. J Mater Chem 22:2419–2426

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Department of Physics, Faculty of Science, Khon Kaen University, for use of their electrochemical workstation facility. This research project was financially supported by Mahasarakham University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paveena Laokul.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 20 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tharasan, P., Somprasong, M., Kenyota, N. et al. Preparation and electrochemical performance of nanostructured Co3O4 particles. J Nanopart Res 24, 126 (2022). https://doi.org/10.1007/s11051-022-05509-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-022-05509-0

Keywords

Navigation