Skip to main content
Log in

Optical absorption enhancement in GaN nanowire arrays with hexagonal periodic arrangement for UV photocathode

  • Review
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

We investigated the influence of geometric parameters on the light absorption of gallium nitride (GaN) nanoarrays with hexagonal periodic arrangement by the finite element analysis method. In this article, we simulated the various structural parameters of GaN nanostructure to obtain the optimum optical efficiency over the substrate filling rates (FRs) ranging from 0.2 to 0.9. It was found that non-uniform hexagonal pyramid nanostructure achieved more significant and broadband light absorption than that of uniform structures in ultraviolet wavelength range from 200 to 400 nm. Simulation results indicate that the non-uniform hexagonal pyramid nanostructure can reduce the reflection on the substrate surface and increase the optical absorption. The distribution non-uniformity can be used as an attempt to improve the light absorption efficiency for optoelectronic device performance. We also analyzed the effects of cross- sectional shape, angles of incident light, and wire-to-wire spacing on the optical absorption of various GaN structures. In conclusion, non-uniform hexagonal pyramid nanostructure (FR = 0.8) with hexagonal periodic arrangement shows significant enhancement of optical absorption. All the results provide an effective solution to enhance optical properties for GaN ultraviolet photocathode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Antoine-Vincent N, Natali F, Mihailovic M, Vasson A, Leymarie J, Disseix P, Byrne D, Semond F, Massies J (2003) Determination of the refractive indices of AlN, GaN, and AlxGa1-xN grown on (111)Si substrates. J Appl Phys 93(9):5222–5226

    Article  CAS  Google Scholar 

  • Debnath R, Hangarter CM, Josell D (2016) 3D geometries: enabling optimization toward the inherent limits of thin-film photovoltaics. Springer Series in Materials Science 218:1–24

    Article  CAS  Google Scholar 

  • França CA, Guerra Y, Valadão DRB, Holanda J, Padrón-Hernández E (2017) Transmission electron microscopy as a realistic data source for the micromagnetic simulation of polycrystalline nickel nanowires. Comput Mater Sci 128:42–44

    Article  Google Scholar 

  • Fujii T, Gao Y, Sharma R, Hu EL, DenBaars SP, Nakamura S (2004) Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening. Appl Phys Lett 84(6):855–857

    Article  CAS  Google Scholar 

  • Golam Sarwar ATM, Leung B, Wang GT, Myers RC (2018) Hexagonal nanopyramidal prisms of nearly intrinsic InN on patterned GaN nanowire arrays. Cryst Growth Des 18(2):1191–1197

    Article  CAS  Google Scholar 

  • Han L, Zhao H (2014) Surface antireflection properties of GaN nanostructures with various effective refractive index profiles. Opt Express 22(26):31907.9

    Article  Google Scholar 

  • Haomin G, Long W, Xinhua L, Zhifei Z, Yuqi W (2011) Analysis of optical absorption in GaAs nanowire arrays. Nanoscale Res Lett 6:617

    Article  Google Scholar 

  • Ho TW, Hong FCN (2012) A reliable method to grow vertically-aligned silicon nanowires by a novel ramp-cooling process. Appl Surf Sci 258(20):7989–7996

    Article  CAS  Google Scholar 

  • Holanda J, Campos CLAV, Franca CA, Padrón-Hernández E (2014) Effective surface anisotropy in polycrystalline ferromagnetic nanowires. J Alloys Compd 617:639–641

    Article  CAS  Google Scholar 

  • Kuo YK, Wang TH, Chang JY et al (2012) Advantages of blue InGaN light-emitting diodes with InGaN-AlGaN-InGaN barriers. Appl Phys Lett 100(3):031112–031113

    Article  Google Scholar 

  • Li J, Yu H, Wong SM, Li X, Zhang G, Lo PG, Kwong DL (2009) Design guidelines of periodic Si nanowire arrays for solar cell application. Appl Phys Lett 95(243113):1–3

    Google Scholar 

  • Li X et al (2011) Bridging electromagnetic and carrier transport calculations for three-dimensional modelling of plasmonic solar cells. 19:0–0

  • Lin H, Xiu F, Fang M, Yip SP, Cheung HY, Wang FY, Han N, Chan KS, Wong CY, Ho JC (2014) Rational design of inverted nanopencil arrays forcost-ef-fective, broadband, and omnidirectional light harvesting. ACS Nano 8:3752–3760

    Article  CAS  Google Scholar 

  • Liu L, Diao Y, Xia SH, Lu FF, Tian J (2019) A first principle study on systematic stability and electronic properties of GaN nanowire surface with Cs/Li/NF3 co-adsorption. Appl Surf Sci 478:393–397

    Article  CAS  Google Scholar 

  • Liu L, Lu FF, Tian J (2020) Exploring the high stability of NEA GaN nanowire photocathodes by activation methods: first principles. Appl Surf Sci 508:145250

    Article  Google Scholar 

  • Peng XC, Wang Z, Liu Y, Manos DM, Poelker M, Stutzman M, Tang B, Zhang SK, Zou JJ (2019) Optical-resonance-enhanced photoemission from nanostructured GaAs photocathodes. Physical Review Applied 12:064002

    Article  CAS  Google Scholar 

  • Tang G, Yan F, Chen X, Luo W (2018) High-quantum-efficiency ultraviolet solar-blind AlGaN photocathode detector with a sharp spectral sensitivity threshold at 300 nm. Appl Opt 57(27):8060–8064

    Article  CAS  Google Scholar 

  • Wang K, Rongguo F, Wang G, Tran HC, Chang BK, Yang L (2017) High-performance photon-enhanced thermionic emission solar energy converters with AlxGa1-xAs/GaAs cathode under multilevel built-in electric field. Opt Commun 402:85–90

    Article  CAS  Google Scholar 

  • Wen L, Zhao Z, Li X, Shen Y, Guo H, Wang Y (2011) Theoretical analysis and modeling of light trappig in high efficiency GaAs nanowire array solar cells. Appl Phys Lett 99(143116):1–3

    Google Scholar 

  • Xia SH, Liu L, Diao Y, Feng S (2017) Research on quantum efficiency and photoemission characteristics of exponential-doping GaN nanowire photocathode. J Mater Sci 52:12795–12805

    Article  CAS  Google Scholar 

  • Xu Z, Huangfu H, He L, Wang J, Yang D, Guo J, Wang H (2017) Light-trapping properties of the si inclined nanowire arrays. Opt Commun 382:332–336

    Article  CAS  Google Scholar 

  • Yang M, Guo J, Xiaoqian F, Liu Z (2018) Quantum efficiency of heterostructured AlN/AlxGa1−xN photocathodes with graded bandgap emission layer. J Mater Sci Mater Electron 29(14):12443–12450

    Article  CAS  Google Scholar 

  • Zou JJ, Ge XW, Zhang YJ, Deng WJ, Zhu ZF, Wang WL, Peng XC, Chen ZP, Chang BK (2016) Negative electron affinity GaAs wire-array photocathodes. Opt Express 24:4632–4639

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Qinghua Lv of Hubei University of Technology is greatly appreciated for the help of COMSOL Multiphysics Business Package calculations.

Funding

This work is supported by Qing Lan Project of Jiangsu Province, China (Grant No. 2017-AD41779) and the Six Talent Peaks Project in Jiangsu Province, China (Grant No. 2015-XCL-008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, Z., Liu, L., Zhangyang, X. et al. Optical absorption enhancement in GaN nanowire arrays with hexagonal periodic arrangement for UV photocathode. J Nanopart Res 23, 24 (2021). https://doi.org/10.1007/s11051-020-05128-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-020-05128-7

Keywords

Navigation