Skip to main content
Log in

Photo-absorption and electron collection of field-assisted GaN nanohole array photocathode

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The light absorption and photo-generation rate under different periods, filling factors (FF), hole depth and inclination angles are studied. The NHA exhibits a larger light absorption compared with the planar film, which is about 99.99973%. Based on the three-dimensional continuity equation, the quantum efficiency (QE) and collection efficiency (CE) of the field-assisted GaN NHA and the graded compositional AlGaN NHA are calculated. The QE and CE of the GaN NHA with a period of 200 nm, a filling factor of 0.05, an inclined angle of 10°, and a field intensity of 2 V/μm are 62.7% and 62.6%, respectively. In addition, the graded compositional AlGaN structure has a more improved effect on the vertical NHA. Compared with the uniform GaN NHA, the electron collection of AlGaN NHA ratio is increased by 2.4 times. The design principles proposed in this work provide guidance to reasonable parameters for the application of NHA photocathodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. X.H. Wang, B.K. Chang, Y.J. Du, J.L. Qiao, Quantum efficiency of GaN photocathode under different illumination. Appl. Phys. Lett. 99, 042102 (2011)

    Article  Google Scholar 

  2. J.L. Qiao, B.K. Chang, Y.S. Qian, X.Q. Du, Y.J. Zhang, P. Gao, X.H. Wang, X.Y. Guo, J. Niu, Y.T. Gao, Study of spectral response characteristics of negative electron affinity GaN photocathode. Acta Phys. Sin. 59, 3577–3582 (2010)

    CAS  Google Scholar 

  3. S. Zhao, Q. Mo, W. Cai, H. Wang, Z. Zang, Inorganic lead-free cesium copper chlorine nanocrystal for highly efficient and stable warm white light-emitting diodes. Photon. Res. 9(2), 187–192 (2021)

    Article  Google Scholar 

  4. H. Guan, S. Zhao, H. Wang, D. Yan, M. Wang, Z. Zang, Room temperature synthesis of stable single silica-coated CsPbBr 3 quantum dots combining tunable red emission of Ag–In–Zn–S for High-CRI white light-emitting diodes. Nano Energy 67, 104279 (2020)

    Article  CAS  Google Scholar 

  5. D. Yan, S. Zhao, H. Wang, Z. Zang, Ultrapure and highly efficient green light emitting devices based on ligand-modified CsPbBr 3 quantum dots. Photon. Res. 8(7), 1086–1092 (2020)

    Article  CAS  Google Scholar 

  6. Z.P. Xu, H.C. Huangfu, L. He, J.Z. Wang, D. Yang, J.W. Guo, H.Y. Wang, Light-trapping properties of the Si inclined nanowire arrays. Opt. Commun. 382, 332–336 (2017)

    Article  CAS  Google Scholar 

  7. Z.P. Xu, H.C. Huangfu, X.W. Li, H.L. Qiao, W.C. Guo, J.W. Guo, H.Y. Wang, Role of nanocone and nanohemisphere arrays in improving light trapping of thin film solar cells. Opt. Commun. 377, 104–109 (2016)

    Article  CAS  Google Scholar 

  8. W.R. Wei, M.L. Tsai, S.T. Ho, S.H. Tai, C.R. Ho, S.H. Tsai, C.W. Liu, R.J. Chung, J.H. He, Above-11%-efficiency organic-inorganic hybrid solar cells with omnidirectional harvesting characteristics by employing hierarchical photon-trapping structures. Nano Lett. 13(8), 3658–3663 (2013)

    Article  CAS  Google Scholar 

  9. Y.F. Makableh, M. Al-Fandi, M. Khasawneh, C.J. Tavares, Comprehensive design analysis of ZnO anti-reflection nanostructures for Si solar cells. Superlattices Microstruct. 124, 1–9 (2018)

    Article  CAS  Google Scholar 

  10. S.E. Han, G. Chen, Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics. Nano Lett. 10(3), 1012–1015 (2010)

    Article  CAS  Google Scholar 

  11. Z. Zang, X. Zeng, J. Du, M. Wang, X. Tang, Femtosecond laser direct writing of microholes on roughened ZnO for output power enhancement of InGaN light-emitting diodes. Opt. Lett. 41(15), 3463–3466 (2016)

    Article  CAS  Google Scholar 

  12. Q.G. Du, C.H. Kam, H.V. Demir, H.Y. Yu, X.W. Sun, Enhanced optical absorption in nanopatterned silicon thin films with a nano-cone-hole structure for photovoltaic applications. Opt. Lett. 36(9), 1713–1715 (2011)

    Article  CAS  Google Scholar 

  13. T.G. Chen, P.C. Yu, S.W. Chen, F.Y. Chang, B.Y. Huang, Y.C. Cheng, J.C. Hsiao, C.K. Li, Y.R. Wu, Characteristics of large-scale nanohole arrays for thin-silicon photovoltaics. Prog. Photovolt. 22(4), 452–461 (2014)

    Article  CAS  Google Scholar 

  14. L. Hong, Rusli, X.C. Wang, H.Y. Zheng, H. Wang, H.Y. Yu, Design guidelines for Si(111) inclined nanohole arrays in thin-film solar cells. IEEE Trans. Nanotechnol. 13(3), 431–436 (2014)

    Article  CAS  Google Scholar 

  15. C. Deng, X.Y. Tan, L.H. Jiang, Y.T. Tu, M. Ye, Y.S. Yi, Efficient light trapping in silicon inclined nanohole arrays for photovoltaic applications. Opt. Commun. 407, 199–203 (2018)

    Article  CAS  Google Scholar 

  16. K.Q. Peng, X. Wang, L. Li, X.L. Wu, S.T. Lee, High-performance silicon nanohole solar cells. J. Am. Chem. Soc. 132(20), 6872 (2010)

    Article  CAS  Google Scholar 

  17. C. Zhang, X.F. Li, A.X. Shang, S.L. Wu, Y.H. Zhan, Z.H. Yang, Design of dual-diameter nanoholes for efficient solar-light harvesting. Nanoscale Res. Lett. 9, 481 (2014)

    Article  Google Scholar 

  18. W. Ding, D.Y. Xia, Q. Li, Y.P. Huang, M. Zheng, L.Z. Zhang, J. Wang, Y. Zhang, M.F. Guo, S. Liu, X.L. Su, F. Yun, X. Hou, Photonic crystal based on anti-reflection structure for GaN/InGaN heterojunction solar cells, in Proceedings of the SPIE. International Conference on Photonics and Optical Engineering, 9449:94491L (2015)

  19. L. Han, H.P. Zhao, Surface antireflection properties of GaN nanostructures with various effective refractive index profiles. Opt. Express 22, 031907 (2014)

    Article  CAS  Google Scholar 

  20. J. Winnerl, M. Kraut, R. Hudeczek, M. Stutzmann, GaN nanowire arrays for photocatalytic applications II: influence of a dielectric shell and liquid environments. Appl. Phys. B 125, 77 (2019)

    Article  Google Scholar 

  21. J.J. Zou, B.K. Chang, Gradient-doping negative electron affinity GaAs photocathodes. Opt. Eng. 45(5), (2006)

    Article  Google Scholar 

  22. X.Q. Fu, Y.B. Ai, Quantum efficiency dependence on built-in electric fields in exponential-doped and graded-doped gallium arsenide photocathodes. Optik 123(20), 1888–1890 (2012)

    Article  CAS  Google Scholar 

  23. M.Z. Yang, J. Guo, X.Q. Fu, Z.H. Liu, Quantum efficiency of heterostructured AlN/AlxGa1-xN photocathodes with graded bandgap emission layer. J. Mater. Sci.: Mater. Electron. 29(14), 12443–12450 (2018)

    CAS  Google Scholar 

  24. F.F. Lu, L. Liu, J. Tian, Comparison of quantum and collection efficiency of field-assisted uniform-doping and exponential-doping GaN nanowire cathodes. Int. J. Energy Res. 44(3), 1751–1760 (2020)

    Article  CAS  Google Scholar 

  25. L. Liu, F.F. Lu, S.H. Xia, Y. Diao, J. Tian, Improved electron capture capability of field-assisted exponential-doping GaN nanowire array photocathode. J. Mater. Sci. Technol. 42, 54–62 (2020)

    Article  Google Scholar 

  26. L. Liu, S.H. Xia, Y. Diao, F.F. Lu, J. Tian, Enhancement of photoemission capability and electron collection efficiency of field-assisted GaN nanowire array photocathode. Nanotechnology 31, (2020)

    Article  CAS  Google Scholar 

  27. Y. Diao, L. Liu, S.H. Xia, Photon-enhanced thermionic emission solar energy converters with GaAs wire array cathode under external electric field. Appl. Nanosci. 10(3), 807–817 (2020)

    Article  CAS  Google Scholar 

  28. C. Miao, Y. Honda, M. Yamaguchi, H. Amano, GaN overgrowth on thermally etched nanoporous GaN template. Jpn. J. Appl. Phys. 52, 08JB03 (2013)

    Article  Google Scholar 

  29. P.M. Coulon, P. Feng, B. Damilano, S. Vézian, T. Wang, P.A. Shields, Influence of the reactor environment on the selective area thermal etching of GaN nanohole arrays. Sci. Rep. 10, 5642 (2020)

    Article  CAS  Google Scholar 

  30. H.M. Guo, L. Wen, X.H. Li, Z.F. Zhao, Y.Q. Wang, Analysis of optical absorption in GaAs nanowire arrays. Nanoscale Res. Lett. 6, 617 (2011)

    Article  Google Scholar 

  31. L. Liu, Y. Diao, S.H. Xia, High-performance GaAs nanowire cathode for photon-enhanced thermionic emission solar converters. J. Mater. Sci. 54, 5605–5614 (2019)

    Article  CAS  Google Scholar 

  32. J. Zou, B. Chang, H. Chen, L. Liu, Variation of quantum-yield curves for GaAs photocathodes under illumination. J. Appl. Phys. 101, (2007)

    Article  Google Scholar 

  33. C. Feng, Y.J. Zhang, Y.S. Qian, B.K. Chang, F. Shi, G.C. Jiao, J.J. Zou, Photoemission from advanced heterostructured AlxGa1-xAs/GaAs photocathodes under multilevel built-in electric field. Opt. Express 23(15), 19478–19488 (2015)

    Article  CAS  Google Scholar 

  34. Y. Liu, Q.X. Li, L.Y. Wan, B. Kucukgok, E. Ghafari, I.T. Ferguson, X. Zhang, S.C. Wang, Z.C. Feng, N. Lu, Composition and temperature dependent optical properties of AlxGa1-xN alloy by spectroscopic ellipsometry. Appl. Surf. Sci. 421(BSI), 389–396 (2017)

    Article  CAS  Google Scholar 

  35. P. Reddy, I. Bryan, Z. Bryan et al., Charge neutrality levels, barrier heights, and band offsets at polar AlGaN. Appl. Phys. Lett. 107, 091603 (2015)

    Article  Google Scholar 

  36. J. Li, T.N. Oder, M.L. Nakarmi, J.Y. Lin, H.X. Jiang, Optical and electrical properties of Mg-doped p-type AlxGa1-xN. Appl. Phys. Lett. 80(7), 1210–1212 (2002)

    Article  CAS  Google Scholar 

  37. J.W. Cooper, Multiple corrections to the angular distribution of photoelectrons at low energies. Phys. Rev. A 42(11), 6942–6945 (1990)

    Article  CAS  Google Scholar 

  38. K.A. Hanold, M.C. Garner, R.E. Continetti, Photoelectron-photofragment angular correlation and energy partitioning in dissociative photodetachment. Phys. Rev. Lett. 77(16), 3335–3338 (1996)

    Article  CAS  Google Scholar 

  39. X. Fang, C.Y. Zhao, H. Bao, Radiative behaviors of crystalline silicon nanowire and nanohole arrays for photovoltaic applications. J. Quant. Spectrosc. Radiat. Transf. 133, 579–588 (2014)

    Article  CAS  Google Scholar 

  40. H. Cheng, F. Shi, Z. Yao, L. Yan, S. Yang, Radiation gain of AlGaN photocathode solar blind UV image intensifier. Infrared Technol. 42(8), 709–714 (2020)

    Article  Google Scholar 

Download references

Funding

This study was funded by Qing Lan Project of Jiangsu Province-China (Grant Number 2017-AD41779) and the Six Talent Peaks Project in Jiangsu Province-China (Grant Number 2015-XCL-008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests in either personal or financial aspects.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 9997 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Lu, F., Tian, J. et al. Photo-absorption and electron collection of field-assisted GaN nanohole array photocathode. J Mater Sci: Mater Electron 32, 12564–12577 (2021). https://doi.org/10.1007/s10854-021-05894-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05894-7

Navigation