Skip to main content

Advertisement

Log in

Enhanced absorptive characteristics of GaN nanowires for ultraviolet (UV) photocathode

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This paper focuses on the geometry of GaN nanomaterials and subsequent absorption rate analysis performed to optimize ultraviolet photocathode for operation in the wavelength range of 200–400 nm. COMSOL Multiphysics commercial software were used to numerically simulate the optical properties of GaN (gallium nitride) nanomaterials. Based on the concept of light trapping mechanism and radial mode resonance absorption, we study GaN nanomaterials with various arrangements and geometric features to obtain unified broadband light absorption in the ultraviolet region. In radial mode, we investigated the light-trapping efficiency of symmetrical and asymmetrical six-side pyramid structure nanoarrays, demonstrating broadband light absorption in two nanostructure periodic arrays (square periods and hexagonal periods) of absorbing efficiency. In the axial mode, the light absorption efficiencies of the hierarchical structures of different geometric parameters and characteristic structures are calculated and analyzed. It is interesting that GaN cylindrical–hemispherical layered nanostructure (R = 140 nm, H = 640 nm) exhibits size-dependent absorption bands and high absorption efficiency in the ultraviolet region. All the results provide an effective solution for designing GaN cathode materials in the ultraviolet omnidirectional absorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. V.E. Kudryashov, S.S. Mamakin, A.N. Turkin et al., Luminescence spectra and efficiency of GaN-based quantum-well heterostructure light emitting diodes: current and voltage dependence. Semiconductors 35(7), 827–834 (2001)

    Article  ADS  Google Scholar 

  2. Y.K. Kuo, T.H. Wang, J.Y. Chang et al., Advantages of blue InGaN light-emitting diodes with InGaN–AlGaN–InGaN barriers. Appl. Phys. Lett. 100(3), 031112–031113 (2012)

    Article  ADS  Google Scholar 

  3. S.J. Pearton, J.C. Zopler, R.J. Shurl et al., Processing defects and devices. J. Appl. Phys. 86(1), 1–78 (1999)

    Article  ADS  Google Scholar 

  4. Z. Yi et al., Gallium clusters gan (n = 1−6): structures, thermochemistry, and electron affinities. Cheminform 35(45), 579–598 (2004)

    Google Scholar 

  5. H.M. Manasevit, F.M. Erdman, W.I. Simpson, The use of metalorganics in the preparation of semiconductor materials: growth on insulating substrates. J. Electrochem. Soc. 13–14, 118–1864 (1971)

    Google Scholar 

  6. X. Zhang, V.G. Dubrovskii, N.V. Sibirev, G.E. Cirlin, C. Sartel, M. Tchernycheva, J.C. Harmand, F. Glas, Growth of inclined GaAs nanowires by molecular beam epitaxy: theory and experiment. Nanoscale Res. Lett. 5(10), 1692–1697 (2010)

    Article  ADS  Google Scholar 

  7. T.W. Ho, F.C.N. Hong, A reliable method to grow vertically-aligned silicon nanowires by a novel ramp-cooling process. Appl. Surf. Sci. 258(20), 7989–7996 (2012)

    Article  ADS  Google Scholar 

  8. J. Noborisaka, J. Motohisa, T. Fukui, Catalyst-free growth of GaAs nanowires by selective-area metalorganic vapor-phase epitaxy. Appl. Phys. Lett. 86(213102), 1–3 (2005)

    Google Scholar 

  9. T. Mårtensson, P. Carlberg, M. Borgstrom, L. Montelius, W. Seifert, L. Samuelson, Nanowire arrays defined by nanoimprint lithography. Nano Lett. 4(4), 699–702 (2004)

    Article  ADS  Google Scholar 

  10. I.G. Kavakli, K. Kantarli, Single and double-layer antireflection coatings on silicon. Turk. J. Phys. 26, 349–354 (2002)

    Google Scholar 

  11. S.E. Lee, S.W. Choi, J. Yi, Double-layer anti-reflection coating using MgF2 and CeO2 films on a crystalline silicon substrate. Thin Solid Films 376(1–2), 208–213 (2000)

    Article  ADS  Google Scholar 

  12. J. Li, H. Yu, S.M. Wong, X. Li, G. Zhang, P.G. Lo, D.L. Kwong, Design guidelines of periodic Si nanowire arrays for solar cell application. Appl. Phys. Lett. 95(243113), 1–3 (2009)

    Google Scholar 

  13. L. Wen, Z. Zhao, X. Li, Y. Shen, H. Guo, Y. Wang, Theoretical analysis and modeling of light trapping in high efficiency GaAs nanowire array solar cells. Appl. Phys. Lett. 99(143116), 1–3 (2011)

    Google Scholar 

  14. L. Hu, G. Chen, Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications. Nano Lett. 7(11), 3249–3252 (2007)

    Article  ADS  Google Scholar 

  15. R. Debnath, C.M. Hangarter, D. Josell, 3D geometries: enabling optimization toward the inherent limits of thin-film photovoltaics. Springer Ser. Mater. Sci. 218, 1–24 (2016)

    Article  Google Scholar 

  16. W. Zhou, M. Tao, L. Chen, H. Yang, Microstructured surface design for omnidirectional antireflection coatings on solar cells. J. Appl. Phys. 102(10), 103–105 (2007)

    Article  Google Scholar 

  17. C.H. Sun, W.L. Min, N.C. Linn, P. Jiang, B. Jiang, Templated fabrication of large area subwavelength antireflection gratings on silicon. Appl. Phys. Lett. 91(23), 231105 (2007)

    Article  ADS  Google Scholar 

  18. Z. Fan, R. Kapadia, P.W. Leu, X. Zhang, Y.L. Chueh, K. Takei, K. Yu, A. Jamshidi, A.A. Rathore, D.J. Ruebusch, M. Wu, A. Javey, Ordered arrays of dual-diameter nanopillars for maximized optical absorption. Nano Lett. 10(10), 3823–3827 (2010)

    Article  ADS  Google Scholar 

  19. K. Zhou, S.W. Jee, Z. Guo, S. Liu, J.H. Lee, Enhanced absorptive characteristics of metal nanoparticle-coated silicon nanowires for solar cell applications. Appl. Opt. 50(31), G63–G68 (2011)

    Article  Google Scholar 

  20. Z. Xu, H. Huangfu, L. He, J. Wang, D. Yang, J. Guo et al., Light-trapping properties of the si inclined nanowire arrays. Opt. Commun. 382, 332–336 (2017)

    Article  ADS  Google Scholar 

  21. H. Lu, H. Zhao, Surface antireflection properties of GaN nanostructures with various effective refractive index profiles. Opt. Express 22(26), 31907 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by Qing Lan Project of Jiangsu Province-China (Grant no.2017-AD41779), the Fundamental Research Funds for the Central Universities-China (Grant no.30916011206) and the Six Talent Peaks Project in Jiangsu Province-China (Grant no.2015-XCL-008). Qinghua Lv of Hubei University of Technology is greatly appreciated for the help with COMSOL Multiphysics Business Package calculations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, Z., Liu, L., Zhangyang, X. et al. Enhanced absorptive characteristics of GaN nanowires for ultraviolet (UV) photocathode. Appl. Phys. A 126, 152 (2020). https://doi.org/10.1007/s00339-020-3312-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-3312-3

Keywords

Navigation