Skip to main content

Advertisement

Log in

On measuring the structure stability for small silver clusters to use them in plasmonics

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

One of the new applications of silver nanoparticles is their use in plasmonic applications determined by the strong interaction of the electromagnetic wave and free electrons in nanostructures. Silver particles of a size smaller than the visible light wavelength can strongly absorb light due to the surface plasmonic resonance caused by the collective oscillation of the conduction electrons. The frequency and intensity of the plasmonic resonance depends on the distribution of the nanostructure polarized charge, which is determined by the shape and structure of the nanoparticle. But the rapid oxidation/sulfidation due to the ambient atmosphere dramatically reduces all the advantages of silver and causes difficulties from the view point of practical applications. Possible solution to this problem could be the formation of very pure particles of a perfect crystal structure, which should be more resistant to the abovementioned phenomena. We believe that unaccounted possibility of increasing the plasmon efficiency can be the usage of silver nanoparticles with a size equal to the magic numbers of various structures. To test this hypothesis, computer simulation was performed to determine the stability of the structure of silver clusters with a size of up to 2.0 nm. It shows that the use of small silver clusters in plasmonic applications strongly requires considering the problem of the thermal stability of their cluster structure with consideration of various kinds of “magic” numbers.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aikens CM (2011) Electronic structure of ligand-passivated gold and silver nanoclusters. J Phys Chem Lett 2:99–104

    Article  CAS  Google Scholar 

  • Akbarzadeh H, Yaghoubi H (2014) Molecular dynamics simulations of silver nanocluster supported on carbon nanotube. J Colloid Interface Sci 418:178–184

    Article  CAS  Google Scholar 

  • Alkis S, Krause JL, Fry JN, Cheng H-P (2009) Dynamics of Ag clusters on complex surfaces: molecular dynamics simulations. Phys Rev B 79:121402(R)

    Article  Google Scholar 

  • Attia YA, Buceta D, Blanco-Varela C, Mohamed MB, Barone G, López-Quintela MA (2014) Structure-directing and high-efficiency photocatalytic hydrogen production by Ag clusters. J Am Chem Soc 136:1182–1185

    Article  CAS  Google Scholar 

  • Baletto F, Ferrando R (2005) Structural properties of nanoclusters: energetic, thermodynamic, and kinetic effects. Rev Mod Phys 77:371

    Article  CAS  Google Scholar 

  • Baletto F, Ferrando R, Fortunelli A, Montalenti F, Mottet C (2002) Crossover among structural motifs in transition and noble-metal clusters. J Chem Phys 116:3856–3863

    Article  CAS  Google Scholar 

  • Becerril D, Noguez C (2015) Adsorption of a methylthio radical on silver nanoparticles: size dependence. J Phys Chem C 119:10824–10835

    Article  CAS  Google Scholar 

  • Chiu Y-P, Wei C-M, Chang C-S (2008) Density functional study of surface-supported planar magic Ag nanoclusters. Phys Rev B 78:115402

    Article  Google Scholar 

  • Cleri F, Rosato V (1993) Tight binding potentials for transition metals and alloys. Phys Rev B 48:22–33

    Article  CAS  Google Scholar 

  • Copp SM, Schultz D, Swasey SM, Faris A, Gwinn EG (2016) Cluster plasmonics: dielectric and shape effects on DNA-stabilized silver clusters. Nanoletters 16:3594–3599

    Article  CAS  Google Scholar 

  • Cuenya BR (2010) Synthesis and catalytic properties of metal nanoparticles: Size, shape, support, composition, and oxidation state effects. Thin Solid Films 518:3127–3150

    Article  CAS  Google Scholar 

  • Demtröder W (2000) Molekülphysik: Theoretische Grundlagen und experimentelle Methoden. Oldenburg: Heidelberg 349 p

  • Dhoubhadel MS, Rout B, Lakshantha WJ, Das SK, D’Souza F, Glass GA, McDaniel FD (2014) Investigation of structural and optical properties of Ag nanoclusters formed in Si(100) after multiple implantations of low energies Ag ions and post-thermal annealing at a temperature below the Ag-Si eutectic point. AIP Conf Proc 1607:16

    Article  CAS  Google Scholar 

  • Engemann DC, Roese S, Hövel H (2016) Preformed 2 nm Ag clusters deposited into ionic liquids: stabilization by cation-cluster interaction. J Phys Chem C 120:6239–6245

    Article  CAS  Google Scholar 

  • Gafner SL, Redel LV, Golovenko ZV, Gafner YY, Samsonov VM, Kharechkin SS (2009) Structural transitions in small nickel clusters. JETP Lett 89:364–369

    Article  CAS  Google Scholar 

  • Gafner Y, Gafner S, Redel L, Zamulin I (2018) Dual structural transition in small nanoparticles of Cu-Au alloy. J Nanopart Res 20:51

    Article  Google Scholar 

  • Garzón IL, Michaelian K, Beltrán MR, Posada-Amarillas A, Ordejón P, Artacho E, Sánchez-Portal D, Soler JM (1998) Lowest energy structures of gold nanoclusters. Phys Rev Lett 81:1600–1603

    Article  Google Scholar 

  • Garzón IL, Michaelian K, Beltan MR, Posada-Amarillas A, Ordejon P, Artacho E, Sanchez-Portal D, Soler JM (1999) Structure and thermal stability of gold nanoclusters: the Au38 case. Eur Phys J D 9:211–215

    Article  Google Scholar 

  • Guo C, Irudayaraj J (2011) Fluorescent Ag clusters via a protein-directed approach as a Hg(II) ion sensor. Anal Chem 83:2883–2889

    Article  CAS  Google Scholar 

  • Horta-Fraijo P, Cortez-Valadez M, Hurtado RB, Vargas-Ortiz R, Perez-Rodriguez AA, Flores-Acosta M (2018) Ultra-small Ag clusters in zeolite A4: antibacterial and thermochromic applications. Phys E 97:111–119

    Article  CAS  Google Scholar 

  • Hua D, Hongtao Y (2015) A mini review on controlling the size of Ag nanoclusters by changing the stabilizer to Ag ratio and by changing DNA sequence. Adv Nat Sci 8:1–9

    Google Scholar 

  • Kuznetsov AS, Cuong NT, Tikhomirov VK, Jivanescu M, Stesmans A, Chibotaru LF, Velázquez JJ, Rodŕiguez VD, Kirilenko D, Van Tendeloo G, Moshchalkov VV (2012) Effect of heat-treatment on luminescence and structure of Ag nanoclusters doped oxyfluoride glasses and implication for fiber drawing. Opt Mater 34:616–621

    Article  CAS  Google Scholar 

  • Liu D, Wen Z, Jiang Q (2011) Surface energy and site dependent cohesive energy of Ag clusters. Curr Nanosci 7:463–470

    Article  CAS  Google Scholar 

  • Lu Y, Liu GL, Lee LP (2005) High-density silver nanoparticle film with temperature-controllable interparticle spacing for a tunable surface enhanced Raman scattering substrate. Nanoletters 5:5–9

    Article  CAS  Google Scholar 

  • Manninen NK, Figueiredo NM, Carvalho S, Cavaleiro A (2014) Production and characterization of Ag nanoclusters produced by plasma gas condensation. Plasma Process Polym 11:629–638

    Article  CAS  Google Scholar 

  • Mirguet C, Fredrickx P, Sciau P, Colombian P (2008) Origin of the self-organisation of Cu°/Ag°nanoparticles in ancient lustre pottery. A TEM study. Phase Transit 81:253–266

    Article  CAS  Google Scholar 

  • Novikov SM, Popok VN, Evlyukhin AB, Hanif M, Morgen P, Fiutowski J, Beermann J, Rubahn H-G, Bozhevolnyi SI (2017) Monocrystalline highly stable silver clusters for plasmonic applications. Langmuir 33:6062–6070

    Article  CAS  Google Scholar 

  • Numazawa S, Ranjan M, Heinig K-H, Facsko S, Smith R (2011) Ordered Ag nanocluster structures by vapor deposition on pre-patterned SiO2. J Phys Condens Matter 23:R. 222203

    Article  Google Scholar 

  • Padmos JD, Boudreau RTM, Weaver DF, Zhang P (2015) Structure of tiopronin-protected silver nanoclusters in a one-dimensional assembly. J Phys Chem C 119:24627–24635

    Article  CAS  Google Scholar 

  • Panáček A, Kvítek L, Prucek R, Kolář M, Večeřová R, Pizúrová N, Sharma VK, Nevěčná T, Zbořil R (2006) Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. J Phys Chem B 110:16248–16253

    Article  Google Scholar 

  • Pang T (2006) An introduction to computational physics. University Press, Cambridge 385 p

    Book  Google Scholar 

  • Roese S, Engemann D, Hoffmann S, Latussek K, Sternemann C, Hövel H (2016) PDMS embedded Ag clusters: coalescence and cluster-matrix interaction. J Phys Conf Ser 712:012068

    Article  Google Scholar 

  • Rycenga M, Cobley CM, Zeng J, Li W, Moran Ch H, Zhang Q, Qin D, Xia Y (2011) Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chem Rev 111:3669–3712

    Article  CAS  Google Scholar 

  • Starace AK, Neal CM, Cao B, Jarrold MF, Aguado A, Lopez JM (2008) Correlation between the latent heats and cohesive energies of metal clusters. J Chem Phys 129:144702

    Article  Google Scholar 

  • Tamaru H, Kuwata H, Miyazaki HT, Miyano K (2002) Resonant light scattering from individual Ag nanoparticles and particle pairs. Appl Phys Lett 80:1826–1828

    Article  CAS  Google Scholar 

  • Velázquez JJ, Tikhomirov VK, Chibotaru LF, Cuong NT, Kuznetsov AS, Rodríguez VD, Nguyen MT, Moshchalkov VV (2012) Energy level diagram and kinetics of luminescence of Ag nanoclusters dispersed in a glass host. Opt Express 20:13582–13591

    Article  Google Scholar 

  • Wilcoxon JP, Abrams BL (2006) Synthesis, structure and properties of metal nanoclusters. Chem Soc Rev 35:1162–1194

    Article  CAS  Google Scholar 

  • Wiley BJ, Chen Y, McLellan JM, Xiong Y, Li Z-Y, Ginger D, Xia Y (2007) Synthesis and optical properties of silver nanobars and nanorice. Nanoletters 7:1032–1036

    Article  CAS  Google Scholar 

  • Yang SH, Pettiette CL, Conceicao J, Cheshnovsky O, Smalley RE (1987) Ups of buckminsterfullerene and other large clusters of carbon. Chem Phys Lett 139:233–274

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was supported by grants from the Russian Foundation for Basic Research, project numbers 18-42-190001and 19-48-190002.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Corresponding author

Correspondence to Yury Gafner.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gafner, Y., Gafner, S. & Bashkova, D. On measuring the structure stability for small silver clusters to use them in plasmonics. J Nanopart Res 21, 243 (2019). https://doi.org/10.1007/s11051-019-4691-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-019-4691-2

Keywords

Navigation