Skip to main content
Log in

Investigation of the Growth Kinetics and Multipolar Plasmonic Properties of Silver Nanoparticle Cluster by Experiment and Numerical Simulations

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Silver nanoparticle (AgNP) has wide-spread applications in photovoltaic cell, biological sensors, biomedical devices, surface enhanced Raman scattering (SERS) etc. which are intricately dependent on AgNP shape, size, concentration and aggregation states. Here, the particle size, shape and aggregation dependent dipole and quadrupole surface plasmon resonances are spectroscopically investigated by preparing AgNPs (diameter 10–110nm) using silver nitrate (AgNO3) and sodium borohydride (NaBH4 as reducing agent) in aqueous environment at 0 C. The AgNP UV-Visible spectra showing plasmon-induced dipole and quadrupole modes are corroborated by the theoretical framework of Mie-Gans model and discrete dipole scattering model DDSCAT and different particle sizes, shapes and possible aggregation or clusterization are predicted. All the samples show presence of spherical and nonspherical distribution of AgNP. However, the concentration of nonspherical particle is more for higher concentration of reducing agent as is evidenced by the appearance of quadrapole absorption maxima. The minimum particle size is found at a particular ratio of concentration of AgNO3 and NaBH4. The day variation of AgNP kinetics also signalled the onset of quadrupole deformation of clusters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Pinchuk A, Kreibig U (2003) Interface decay channel of particle surface plasmon resonance. New J Phys 5:151

    Article  Google Scholar 

  2. Dahmen C, Schmidt B, von Plessen G (2007) Radiation Damping in Metal Nanoparticle Pairs. Nano Lett 7:318

    Article  CAS  Google Scholar 

  3. Pinchuk A, Kreibig U, Hilger A (2004) Optical properties of metallic nanoparticles: influence of interface effects and interband transitions. Surf Sci 557:269

    Article  CAS  Google Scholar 

  4. Mie G (1908) Beitrge zur Optik trber Medien, speziell kolloidaler Metallsungen. Ann Phys 25:329

    Google Scholar 

  5. Yeshchenko O A, Dmitruk I M, Alexeenko A, Yu A, Losytskyy M, Kotko A V, Pinchuk A (2009) Size-dependent surface-plasmon-enhanced photoluminescence from silver nanoparticles embedded in silica. Phys Rev B 79:235438

    Article  Google Scholar 

  6. Oprsal J, Pouzar M, Knotek P, Slouf M, Pavlova E (2012) A study of silver nanoparticle behavior in liquid media for ecotoxicity tests. Nanocon 2012, Czech Republic

  7. Xia Y, Halas N J (2005) Shape controlled synthesis and surface plasmonic properties of metallic nanostructures. MRS Bull 30:338–348

    Article  CAS  Google Scholar 

  8. Jain P K, Huang X, El-Sayed I H, El-Sayed M A (2007) Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sen sing, biology, and medicine. Plasmonics 2:107–118

    Article  CAS  Google Scholar 

  9. Yong K T, Swihart M T, Ding H, Prasad P N (2009) Multifunctional nanoparticles as biocompatible targeted probes for human cancer diagnosis and therapy. Plasmonics 4:79–93

    Article  CAS  Google Scholar 

  10. Ren J, Tilley R D (2007) Preparation, self-assembly, and mechanistic study of highly monodispersed nanocubes. J Am Chem Soc 129:3287–3291

    Article  CAS  Google Scholar 

  11. Moskovits M (1985) Surface-enhanced spectroscopy. Rev Mod Phys 57:783–826

    Article  CAS  Google Scholar 

  12. Astruc D, Lu F, Aranzaes JR, Angew J (2005) Nanoparticles as Recyclable Catalysts: The Frontier between Homogeneous and Heterogeneous Catalysis. Chem Int Ed 44:7852–7872

    Article  CAS  Google Scholar 

  13. Riveros G, Green A, Cortes H, Gomez R, Marotti E, Dalchiele E A (2006) Size-Controlled and Optical Properties of Monodispersed Silver Nanoparticles Synthesized by the Radiolytic Reduction Method. Nanotech 17:561–570

    Article  CAS  Google Scholar 

  14. Dhar S, Reddy E M, Shiras A, Pokharkar V, Prasad B L V (2008) Natural gum reduced/stabilized gold nanoparticles for drug delivery formulations. Chem Eur J 14(2008):10244–10250

    Article  CAS  Google Scholar 

  15. Sanpui P, Chattopadhyay A, Ghosh S S (2011) Induction of apoptosis in cancer cells at low silver nanoparticle concentrations using chitosan nanocarrier. ACS Appl Mater Int 3:218–228

    Article  CAS  Google Scholar 

  16. Link S, El-Sayed M A (2000) Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals. Int Rev Phys Chem 19(3):409

    Article  CAS  Google Scholar 

  17. Drain B (1988) The Discrete-Dipole Approximation and its Application to Interstellar Graphite Grains. Astrophys J 333:848–872

    Article  Google Scholar 

  18. He R, Qian X, Yin J, Zikang Z (2002) Preparation of polychrome silver nanoparticles in different solvents. J Mat Chem 12:3783–86

    Article  CAS  Google Scholar 

  19. Raza S, Kadkhodazadeh S, Christensen T, Vece M D, Wubs M, Mortensen N, Stenger N (2015) Multipole plasmons and their disappearance in few-nanometre silver nanoparticles. Nat Comm 6:08788

    Article  CAS  Google Scholar 

  20. Amendola V, Bakr O, Stelacci F (2010) A Study of the Surface Plasmon Resonance of Silver Nanoparticles by the Discrete Dipole Approximation Method: Effect of Shape, Size, Structure, and Assembly. Plasmonics 5:85–97

    Article  CAS  Google Scholar 

  21. Amendola V, Polizzi S, Meneghetti M (2006) Laser ablation synthesis of gold nanoparticles in organic solvents. J Phys Chem B 110:7232–7237

    Article  CAS  Google Scholar 

  22. Sherry L F, Jin R, Chad A, Schatz G C, Duyne R P V. (2006) Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms. Nano Lett 6:2060

    Article  CAS  Google Scholar 

  23. Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer, Berlin, pp 1–134

    Google Scholar 

  24. Gans R (1915) ber die Form ultramikroskopischer Silberteilchen. Annlen Phys 47:270

    Article  CAS  Google Scholar 

  25. Drain B T, Flatau P J (2013) User guide for the discrete dipole approximation code DDSCAT 7.3. arXiv:1305.6497 (26th May, 2013)

  26. Palik E (1998) Handbook of optical constants of solids, 1st edn. Academic Press, Cambridge

    Google Scholar 

Download references

Funding

The authors gracefully acknowledge the financial support from Department of Science and Technology (India) to procure the UV-Visible spectrophotometer under the FIST scheme at the Dept. of Physics, Barasat Government College.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Srijit Bhattacharya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Islam, M.M., Mandal, S. & Bhattacharya, S. Investigation of the Growth Kinetics and Multipolar Plasmonic Properties of Silver Nanoparticle Cluster by Experiment and Numerical Simulations. Plasmonics 13, 1803–1810 (2018). https://doi.org/10.1007/s11468-018-0694-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-018-0694-6

Keywords

Navigation