Skip to main content

Advertisement

Log in

Functional separator for Li/S batteries based on boron-doped graphene and activated carbon

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Lithium/sulfur (Li/S) batteries have received great attention due to their high theoretical energy density, but the “shuttle effect” of polysulfides restricts the further development of Li/S batteries. The construction of modified functional separator is an effective strategy to obstruct the diffusion of polysulfides. We report boron-doped graphene and activated carbon (B-G/AC)–modified functional separator for Li/S batteries. The B-G/AC composites are obtained via a one-step hydrothermal method and used as a functional layer to modify the battery separator. The B-G with highly porous three-dimensional (3D) network structure exhibits good electrical conductivity, and rich porous structure AC increases the specific surface area of the B-G/AC composite. The carbon coating layer can act as the second collector, utilizing the inactivated sulfur that is freed in the electrolyte. The modified separator can facilitate the polysulfide dissolution and migration towards the anode. The B-G/AC samples exhibit excellent electrochemical performances. The B-G/AC samples maintain a higher capacity of 1062 mA h g−1 after 100 cycles at 0.1 C than a routine separator (709 mA h g−1 after 100 cycles at 0.1 C). Diffusion experiments of polysulfides in U-shaped bottles also proved importance of B-G/AC as a separator. In addition, the B-G/AC samples also exhibit excellent cycling stability over 300 cycles, delivering a discharge capacity of 534 mA h g−1 when the current is 1 C. The present study confirms that separator modification is an effective technique that leads to good electrochemical performance.

Long-term cyclic performance of Li/S batteries with different separators at 1 C and photograph of polysulfide diffusion process across with B-G/AC separator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Chai LY, Wang JX, Wang HY, Zhang LY, Yu WT, Mai LQ (2015) Porous carbonized graphene-embedded fungus film as an interlayer for superior Li-S batteries. Nano Energy 17:224–232

    Article  CAS  Google Scholar 

  • Chong L, Chen P, Huang J, Huang H (2018) Capacitive deionization of a RO brackish water by AC/graphene composite electrodes. Chemosphere 191:296–301

    Article  CAS  Google Scholar 

  • Chowdhury S, Jiang Y, Muthukaruppan S, Balasubramanian R (2018) Effect of boron doping level on the photocatalytic activity of graphene aerogels. Carbon 128:237–248

    Article  CAS  Google Scholar 

  • Ganesana A, Varzib A, Passerini S, Shaijumona M (2016) Graphene derived carbon confined sulfur cathodes for lithium-sulfur batteries: electrochemical impedance studies. Electrochim Acta 214:129–138

    Article  Google Scholar 

  • Gao SH, Ren ZY, Wan LJ, Zheng JM, Guo P, Zhou YX (2011) Density functional theory prediction for diffusion of lithium on boron-doped graphene surface. Appl Surf Sci 257:7443–7446

    Article  CAS  Google Scholar 

  • Gnedenkov SV, Sinebryukhov SL, Zheleznov VV, Opra DP, Voit EI, Modin EB, Sokolov AA, Ustinov AU, Sergienko VI (2018) Effect of Hf-doping on electrochemical performance of anatase TiO2 as an anode material for lithium storage. R Soc Open Sci 5:171811

    Article  Google Scholar 

  • Han P, Manthiram A (2017) Boron- and nitrogen-doped reduced graphene oxide separators for high-performance Li-S batteries. J Power Sources 369:87–94

    Article  CAS  Google Scholar 

  • He X, Shuai Y, Na L, Chen KH, Zhang YG, Zhang ZP, Gan FY (2018) High performance lithium-sulfur batteries with facile titanium nitride particles modified separator. Mater Lett 215:91–94

    Article  CAS  Google Scholar 

  • Huang JQ, Zhang Q, Wei F (2015) Multi-functional separator/interlayer system for high-stable lithium-sulfur batteries: progress and prospects. Energy Storage Mater 1:127–145

    Article  Google Scholar 

  • Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339

    Article  CAS  Google Scholar 

  • Kang J, Atashin S, Jayaram S, Wen JZ (2017) Frequency and temperature dependent electrochemical characteristics of carbon-based electrodes made of commercialized activated carbon, graphene and single-walled carbon nanotube. Carbon 111:338–349

    Article  CAS  Google Scholar 

  • Kong WB, Wang DT, Yan LJ, Luo YF, Jiang KL, Li QQ, Zhang L, Lu SG, Fan SS, Li J, Wang JP (2018) Ultrathin HfO2-modified carbon nanotube films as efficient polysulfide barriers for Li-S batteries. Carbon 139:896–905

    Article  CAS  Google Scholar 

  • Lee SK, Lee YJ, Sun YK (2016) Nanostructured lithium sulfide materials for lithium-sulfur batteries. J Power Sources 323:174–188

    Article  CAS  Google Scholar 

  • Lee DH, Ahn JW, Park MS, Eftekhari A, Kim DW (2018) Metal-organic framework/carbon nanotube-coated polyethylene separator for improving the cycling performance of lithium-sulfur cells. Electrochim Acta 283:1291–1299

    Article  CAS  Google Scholar 

  • Li CX, Dong SH, Guo DX, Zhang ZW, Wang MQ, Yin LW (2017a) Ternary NiO/RGO-Sn hybrid flexible freestanding film as interlayer for lithium-sulfur batteries with improved performance. Electrochim Acta 251:43–50

    Article  CAS  Google Scholar 

  • Li HP, Sun LC, Zhang YG, Tan TZ, Wang GK, Bakenov Z (2017b) Enhanced cycle performance of Li/S battery with the reduced graphene oxide/activated carbon functional interlayer. J Energy Chem 26:1276–1281

    Article  Google Scholar 

  • Li HP, Sun LC, Wang Z, Zhang YG, TZ T, GK W, Bakenov Z (2018) Three-dimensionally hierarchical graphene based aerogel encapsulated sulfur as cathode for lithium/sulfur batteries. Nanomaterials 8:69

    Article  Google Scholar 

  • Li HP, Sun LC, Zhao Y, Tan TZ, Y Zhang YG (2019) A novel CuS/graphene-coated separator for suppressing the shuttle effect of lithium/sulfur batteries. Appl Surf Sci 466:309–319

    Article  CAS  Google Scholar 

  • Ma GQ, Wen ZY, Jin J, Wu MF, Wu XW, Zhang JC (2014) Enhanced cycle performance of Li-S battery with a polypyrrole functional interlayer. J Power Sources 267:542–546

    Article  CAS  Google Scholar 

  • Opra DP, Gnedenkov SV, Sinebryukhov SL, Voit EI, Sokolov AA, Modin EB, Podgorbunsky AB, Sushkov YV, Zheleznov VV (2017) Characterization and electrochemical properties of nanostructured Zr-doped anatase TiO2 tubes synthesized by sol-gel template route. J Mater Sci Technol 33:527–534

    Article  Google Scholar 

  • Opra DP, Gnedenkov SV, Sinebryukhov SL, Voit EI, Sokolov AA, Ustinov AY, Zheleznov VV (2018) Zr4+/F co-doped TiO2 (anatase) as high performance anode material for lithium-ion battery. Prog Nat Sci 28:542–547

    Article  CAS  Google Scholar 

  • Pei F, Lin LL, Fu A, Mo SG, Ou DH, Fang XL, Zheng NF (2018) A two-dimensional porous carbon-modified separator for high-energy-density Li-S batteries. Joule 2:323–336

    Article  CAS  Google Scholar 

  • Sahoo M, Sreena K, Vinayan B, Ramaprabhu S (2015) Green synthesis of boron doped graphene and its application as high-performance anode material in Li ion battery. Mater Res Bull 61:383–390

    Article  CAS  Google Scholar 

  • Shao HY, Wang WK, Zhang H, Wang AB, Chen XN, Huang YQ (2018) Nano-TiO2 decorated carbon coating on the separator to physically and chemically suppress the shuttle effect for lithium-sulfur battery. J Power Sources 378:537–545

    Article  CAS  Google Scholar 

  • Strubel P, Thieme S, Weller C, Althues H, Kaskel S (2017) Insights into the redistribution of sulfur species during cycling in lithium-sulfur batteries using physisorption methods. Nano Energy 34:437–441

    Article  CAS  Google Scholar 

  • Tang H, Yao SS, Xue SK, Liu MQ, Chen LL, Jing MX, Shen XQ, Li TB, Xiao KS, Qin SB (2018) In-situ synthesis of carbon@Ti4O7 non-woven fabric as a multifunctional interlayer for excellent lithium-sulfur battery. Electrochim Acta 263:158–167

    Article  CAS  Google Scholar 

  • Wu F, Shi LL, Mu DB, Xu HL, Wu BR (2015) A hierarchical carbon fiber/sulfur composite as cathode material for Li-S batteries. Carbon 86:146–155

    Article  CAS  Google Scholar 

  • Wu X, Fan LS, Qiu Y, Wang MX, Cheng JH, Guan B, Guo ZK, Zhang NQ, Sun KN (2018) Ionic selectivity Prussian blue modified Celgard separator for high performance lithium sulfur battery. ChemSusChem 11:3345–3351

    Article  CAS  Google Scholar 

  • Yan LJ, Luo N, Kong WB, Luo S, Wu HC, Jiang KL, Li Q, Fan SS, Duan WH, Wang JP (2018) Enhanced performance of lithium-sulfur batteries with an ultrathin and lightweight MoS2/carbon nanotube interlayer. J Power Sources 389:169–177

    Article  CAS  Google Scholar 

  • Yang W, Yang W, Feng JN, Ma ZP, Shao GJ (2016) High capacity and cycle stability rechargeable lithium-sulfur batteries by sandwiched gel polymer electrolyte. Electrochim Acta 210:71–78

    Article  CAS  Google Scholar 

  • Yu XM, Han P, Wei ZX, Peng SJ, Ma JM, Zheng GF (2018) Boron-doped graphene for electrocatalytic N2 reduction. Joule 2:1610–1622

    Article  CAS  Google Scholar 

  • Zhang K, Li Q, Zhang LY, Fang J, Li J, Qin FR, Zhang Z, Lai YQ (2014a) From filter paper to carbon paper and toward Li-S battery interlayer. Mater Lett 121:198–201

    Article  CAS  Google Scholar 

  • Zhang YG, Zhao Y, Bakenov Z, Konarov A, Chen P (2014b) Preparation of novel network nanostructured sulfur composite cathode with enhanced stable cycle performance. J Power Sources 270:326–331

    Article  CAS  Google Scholar 

  • Zhang YG, Zhao Y, Konarov A, Li Z, Chen P (2015a) Effect of mesoporous carbon microtube prepared by carbonizing the poplar catkin on sulfur cathode performance in Li/S batteries. J Alloys Compd 619:298–302

    Article  CAS  Google Scholar 

  • Zhang ZY, Lai YQ, Zhang ZA, Li J (2015b) A functional carbon layer-coated separator for high performance lithium sulfur batteries. Solid State Ionics 278:166–171

    Article  CAS  Google Scholar 

  • Zhang X, Xie H, Kim C, Zaghib K, Mauger A, Julien CM (2017) Advances in lithium-sulfur batteries. Mater Sci Eng R 121:1–29

    Article  Google Scholar 

  • Zhang YG, Sun LC, Li HP, Tan TZ, Li JD (2018) Porous three-dimensional reduced graphene oxide for high performance lithium-sulfur batteries. J Alloys Compd 739:290–297

    Article  CAS  Google Scholar 

  • Zhou XY, Liao QC, Tang JJ, Bai T, Chen F, Yang J (2016) A high-level N-doped porous carbon nanowire modified separator for long-life lithium-sulfur batteries. J Electroanal Chem 768:55–61

    Article  CAS  Google Scholar 

Download references

Funding

This study received support from the Natural Science Foundation of Hebei Province of China (Project No. E2017202032) and Technology Foundation for returned overseas Chinese scholars (No. C2015003038).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan Zhao or Jingde Li.

Ethics declarations

All relevant ethical standards were satisfied.

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOC 1204 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B., Sun, Z., Zhao, Y. et al. Functional separator for Li/S batteries based on boron-doped graphene and activated carbon. J Nanopart Res 21, 7 (2019). https://doi.org/10.1007/s11051-018-4451-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-018-4451-8

Keywords

Navigation