Skip to main content

Advertisement

Log in

Towards High-performance Lithium-Sulfur Batteries: the Modification of Polypropylene Separator by 3D Porous Carbon Structure Embedded with Fe3C/Fe Nanoparticles

  • Article
  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

Lithium-sulfur(Li-S) batteries with high energy densities have received increasing attention. However, the electrochemical performance of Li-S batteries is still far from the satisfactory of the practical application, which can be mainly attributed to the shuttling of polysulfides and the slow reaction kinetics of polysulfide conversion. To address this issue, a 3D porous carbon structure constructed by 2D N-doped graphene and 1D carbon nanotubes with embedded Fe3C/Fe nanoparticles(NG@Fe3C/Fe) was designed and prepared by a simple programmed calcination method for the modification of polypropylene(PP) separator. The Fe3C/Fe nanoparticles demonstrate an excellent catalytic conversion and strong chemisorption towards polysulfides, while the unique architecture of N-doped graphene promotes the Li+/electron transfer and the physical adsorption of polysulfides. The electrochemical performance of the Li-S batteries with the NG@Fe3C/Fe-modified separator is significantly improved. A large discharge capacity of 1481 mA·h·g−1 is achieved at 0.2 C, and a high capacity of 601 mA·h·g−1 is maintained after discharged/charged for 500 cycles at a current rate of 1 C. This work provides a new approach for the development of high-performance Li-S batteries through the modification of the PP separator by rationally designed composites with large adsorption capability to polysulfides, good wettability to the electrolyte and high catalytic property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Du Z., Chen X., Hu W., Chuang C., Xie S., Hu A., Yan W., Kong X., Wu X., Ji H., Wan L. J., J. Am. Chem. Soc., 2019, 141, 3977

    Article  CAS  Google Scholar 

  2. Zhao M., Li B. Q., Zhang X. Q., Huang J. Q., Zhang Q., ACS Cent. Sci., 2020, 6, 1095

    Article  CAS  Google Scholar 

  3. Huang S., Wang Z., Von Lim Y., Wang Y., Li Y., Zhang D., Yang H. Y., Adv. Energy Mater., 2021, 11, 2003689

    Article  CAS  Google Scholar 

  4. Zhao M., Peng H. J., Li B. Q., Chen X., Xie J., Liu X., Zhang Q., Huang J. Q., Angew. Chem. Int. Ed., 2020, 59, 9011

    Article  CAS  Google Scholar 

  5. Tang C., Zhang Q., Zhao M. Q., Huang J. Q., Cheng X. B., Tian G. L., Peng H. J., Wei F., Adv. Mater., 2014, 26, 6100

    Article  CAS  Google Scholar 

  6. Liu Y.-S., Ma C., Bai Y.-L., Wu X.-Y., Zhu Q.-C., Liu X., Liang X.-H., Wei X., Wang K.-X., Chen J.-S., J. Mater. Chem. A, 2018, 6, 17473

    Article  CAS  Google Scholar 

  7. Qiu W., Li J., Zhang Y., Kalimuldina G., Bakenov Z., Nanotechnol., 2021, 32, 075403

    Article  CAS  Google Scholar 

  8. Qiu Y., Fan L., Wang M., Yin X., Wu X., Sun X., Tian D., Guan B., Tang D., Zhang N., ACS Nano, 2020, 14, 16105

    Article  Google Scholar 

  9. He J., Hartmann G., Lee M., Hwang G. S., Chen Y., Manthiram A., Energy Environ. Sci., 2019, 12, 344

    Article  CAS  Google Scholar 

  10. Fan X., Yuan R., Lei J., Lin X., Xu P., Cui X., Cao L., Zheng M., Dong Q., ACS Nano, 2020, 14, 15884

    Article  Google Scholar 

  11. Peng H.-J., Huang J.-Q., Cheng X.-B., Zhang Q., Adv. Energy Mater., 2017, 7, 1700260

    Article  Google Scholar 

  12. Rana M., Li M., Huang X., Luo B., Gentle I., Knibbe R., J. Mater. Chem. A, 2019, 7, 6596

    Article  CAS  Google Scholar 

  13. Gu Z., Cheng C., Yan T., Liu G., Jiang J., Mao J., Dai K., Li J., Wu J., Zhang L., Nano Energy, 2021, 86, 106111

    Article  CAS  Google Scholar 

  14. Pei F., Lin L., Fu A., Mo S., Ou D., Fang X., Zheng N., Joule, 2018, 2, 323

    Article  CAS  Google Scholar 

  15. Li N., Xie Y., Peng S., Xiong X., Han K., J. Energy Chem., 2020, 42, 116

    Article  Google Scholar 

  16. Han J., Johnson I., Lu Z., Kudo A., Chen M., Nano Lett., 2021, 21, 6504

    Article  CAS  Google Scholar 

  17. He D., Liu X., Li X., Lyu P., Chen J., Rao Z., Chem. Eng. J., 2021, 419, 129509

    Article  CAS  Google Scholar 

  18. Zhou T., Lv W., Li J., Zhou G., Zhao Y., Fan S., Liu B., Li B., Kang F., Yang Q.-H., Energy Environ. Sci., 2017, 10, 1694

    Article  CAS  Google Scholar 

  19. Jiao L., Zhang C., Geng C., Wu S., Li H., Lv W., Tao Y., Chen Z., Zhou G., Li J., Ling G., Wan Y., Yang Q. H., Adv. Energy Mater., 2019, 9, 1900219

    Article  Google Scholar 

  20. Guo P., Liu D., Liu Z., Shang X., Liu Q., He D., Electrochim. Acta, 2017, 256, 28

    Article  CAS  Google Scholar 

  21. Ma C., Zhang Y., Feng Y., Wang N., Zhou L., Liang C., Chen L., Lai Y., Ji X., Yan C., Wei W., Adv. Mater., 2021, 33, 2100171

    Article  CAS  Google Scholar 

  22. Ye T. N., Lv L. B., Li X. H., Xu M., Chen J. S., Angew. Chem. Int. Ed., 2014, 53, 6905

    Article  CAS  Google Scholar 

  23. Qiao Z., Zhang Y., Meng Z., Xie Q., Lin L., Zheng H., Sa B., Lin J., Wang L., Peng D. L., Adv. Funct. Mater., 2021, 31, 2100970

    Article  CAS  Google Scholar 

  24. Xu H., Jiang Q., Zhang B., Chen C., Lin Z., Adv. Mater., 2020, 32, 1906357

    Article  CAS  Google Scholar 

  25. Gnana Kumar G., Chung S. H., Raj Kumar T., Manthiram A., ACS Appl. Mater. Interfaces, 2018, 10, 20627

    Article  CAS  Google Scholar 

  26. Tran D. T., Zhang S. S., J. Mater. Chem. A, 2015, 3, 12240

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos.21931005, 21871177, 20172012002), the Natural Science Foundation of Shanghai, China(No.20ZR1427600), and the Project of the Shanghai Science and Technology Committee, China(No.19JC1412600).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kaixue Wang or Jiesheng Chen.

Ethics declarations

The authors declare no conflicts of interest.

Supporting Information

40242_2021_1386_MOESM1_ESM.pdf

Towards High-performance Lithium-Sulfur Batteries: the Modification of Polypropylene Separator by 3D Porous Carbon Structure Embedded with Fe3C/Fe Nanoparticles

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Zhao, X., Li, S. et al. Towards High-performance Lithium-Sulfur Batteries: the Modification of Polypropylene Separator by 3D Porous Carbon Structure Embedded with Fe3C/Fe Nanoparticles. Chem. Res. Chin. Univ. 38, 147–154 (2022). https://doi.org/10.1007/s40242-021-1386-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-021-1386-x

Keywords

Navigation