Skip to main content
Log in

Application of upconversion luminescent-magnetic microbeads with weak background noise and facile separation in ochratoxin A detection

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Ochratoxin A (OTA), the most harmful and abundant ochratoxin, is chemically stable and commonly existed in foodstuffs. In this work, upconversion luminescent-magnetic microbeads (UCLMMs) -based cytometric bead array for OTA detection with a less reagent consumption and high sensitivity has been established and optimized. In UCLMMs, upconversion nanocrystals (UCNs) for optical code present a weak background noise and no spectral cross talk between the encoding signals and target labels under two excitation conditions to improve detection sensitivity. While the superparamagnetic Fe3O4 nanoparticles (Fe3O4 NPs) aim for rapid analysis. The results show that the developed method has a sensitivity of 9.553 ppt below HPLC with a 50-μL sample and can be completed in <2 h with good accuracy and high reproducibility. Therefore, different colors of UCLMMs will become a promising assay platform for multiple mycotoxins after further improvement.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Birtwell SW, Morgan H (2009) Microparticle encoding technologies for high-throughput multiplexed suspension assays. Integr Biol 1:345–362

    Article  Google Scholar 

  • Bonetta L (2005) Flow cytometry smaller and better. Nat Meth 2:785–795

    Article  Google Scholar 

  • Chen J, Fang Z, Liu J, Zeng L (2012) A simple and rapid biosensor for ochratoxin A based on a structure-switching signaling aptamer. Food Control 25:555–560. doi:10.1016/j.foodcont.2011.11.039

    Article  Google Scholar 

  • Creppy EE (2002) Update of survey, regulation and toxic effects of mycotoxins in Europe. Toxicol Lett 127:19–28. doi:10.1016/S0378-4274(01)00479-9

    Article  Google Scholar 

  • Dasso J, Lee J, Bach H, Mage RG (2002) A comparison of ELISA and flow microsphere-based assays for quantification of immunoglobulins. J Immunol Methods 263:23–33. doi:10.1016/S0022-1759(02)00028-5

    Article  Google Scholar 

  • Duarte SC, Lino CM, Pena A (2010) Mycotoxin food and feed regulation and the specific case of ochratoxin A: a review of the worldwide status. Food Additives & Contaminants: Part A 27:1440–1450. doi:10.1080/19440049.2010.497166

    Article  Google Scholar 

  • Flajs D, Domijan AM, Ivić D, Cvjetković B, Peraica M (2009) ELISA and HPLC analysis of ochratoxin A in red wines of Croatia. Food Control 20:590–592. doi:10.1016/j.foodcont.2008.08.021

    Article  Google Scholar 

  • Gorris HH, Wolfbeis OS (2013) Photon-upconverting nanoparticles for optical encoding and multiplexing of cells. Biomolecules, and Microspheres Angewandte Chemie 52:3584

    Google Scholar 

  • Guo X et al (2014) Development of an ultrasensitive aptasensor for the detection of aflatoxin B 1. Biosensors & Bioelectronics 56C:340–344

    Article  Google Scholar 

  • Huang K, Idris NM, Zhang Y (2015) Engineering of lanthanide-doped upconversion nanoparticles for optical encoding. Small 12:836

    Article  Google Scholar 

  • Hussein HS, Brasel JM (2001) Toxicity, metabolism, and impact of mycotoxins on humans and animals. Toxicology 167:101–134. doi:10.1016/S0300-483X(01)00471-1

    Article  Google Scholar 

  • Kellar KL, Iannone MA (2002) Multiplexed microsphere-based flow cytometric assays. Exp Hematol 30:1227–1237. doi:10.1016/S0301-472X(02)00922-0

    Article  Google Scholar 

  • Lee J, Bisso P, Srinivas RL, Kim JJ, Swiston A, Doyle PS (2014) Universal process-inert encoding architecture for polymer microparticles. Nat Mater 13:524–529

    Article  Google Scholar 

  • Li Y, Wu H, Guo L, Zheng Y, Guo Y (2012) Microsphere-based flow cytometric immunoassay for the determination of citrinin in red yeast rice. Food Chem 134:2540–2545. doi:10.1016/j.foodchem.2012.04.072

    Article  Google Scholar 

  • Müller G et al (2003) Effects of the mycotoxin ochratoxin A and some of its metabolites on the human cell line THP-1. Toxicology 184:69–82. doi:10.1016/S0300-483X(02)00593-0

    Article  Google Scholar 

  • Malhotra BD, Srivastava S, Ali MA, Singh C (2014) Nanomaterial-based biosensors for food toxin detection Applied Biochemistry and Biotechnology. Applied Biochemistry and Biotechnology 174:880–896. doi:10.1007/s12010-014-0993-0

    Article  Google Scholar 

  • Mao J, Lei S, Yang X, Xiao D (2013) Quantification of ochratoxin A in red wines by conventional HPLC–FLD using a column packed with core–shell particles. Food Control 32:505–511

    Article  Google Scholar 

  • Novo P, Moulas G, França Prazeres DM, Chu V, Conde JP (2013) Detection of ochratoxin A in wine and beer by chemiluminescence-based ELISA in microfluidics with integrated photodiodes. Sensors Actuators B Chem 176:232–240. doi:10.1016/j.snb.2012.10.038

    Article  Google Scholar 

  • Pena A, Cerejo F, Lino C, Silveira I (2005) Determination of ochratoxin A in Portuguese rice samples by high performance liquid chromatography with fluorescence detection. Anal Bioanal Chem 382:1288–1293. doi:10.1007/s00216-005-3254-9

    Article  Google Scholar 

  • Pfohl-Leszkowicz A, Manderville RA (2007) Ochratoxin A: an overview on toxicity and carcinogenicity in animals and humans. Mol Nutr Food Res 51:61–99. doi:10.1002/mnfr.200600137

    Article  Google Scholar 

  • Pfohl-Leszkowicz A, Manderville RA (2012) An update on direct genotoxicity as a molecular mechanism of ochratoxin A carcinogenicity. Chem Res Toxicol 25:252–262. doi:10.1021/tx200430f

    Article  Google Scholar 

  • Ren W et al (2013) A cytometric bead assay for sensitive DNA detection based on enzyme-free signal amplification of hybridization chain reaction. Biosens Bioelectron 49:380–386. doi:10.1016/j.bios.2013.05.055

    Article  Google Scholar 

  • Rivas L, Mayorga-Martinez CC, Quesada-González D, Zamora-Gálvez A, de la Escosura-Muñiz A, Merkoçi A (2015) Label-free impedimetric aptasensor for ochratoxin-A detection using iridium oxide nanoparticles. Anal Chem 87:5167–5172. doi:10.1021/acs.analchem.5b00890

    Article  Google Scholar 

  • Sathe TR, Agrawal A, Nie S (2006) Mesoporous silica beads embedded with semiconductor quantum dots and iron oxide nanocrystals: dual-function microcarriers for optical encoding and magnetic separation. Anal Chem 78:5627–5632. doi:10.1021/ac0610309

    Article  Google Scholar 

  • Soleimany F, Jinap S, Faridah A, Khatib A (2012) A UPLC–MS/MS for simultaneous determination of aflatoxins, ochratoxin A, zearalenone, DON, fumonisins, T-2 toxin and HT-2 toxin, in cereals. Food Control 25:647–653. doi:10.1016/j.foodcont.2011.11.012

    Article  Google Scholar 

  • Solfrizzo M, Gambacorta L, Lattanzio VMT, Powers S, Visconti A (2011) Simultaneous LC–MS/MS determination of aflatoxin M1, ochratoxin A, deoxynivalenol, de-epoxydeoxynivalenol, α and β-zearalenols and fumonisin B1 in urine as a multi-biomarker method to assess exposure to mycotoxins. Anal Bioanal Chem 401:2831–2841. doi:10.1007/s00216-011-5354-z

    Article  Google Scholar 

  • Song T et al (2014) Self-healing encapsulation strategy for preparing highly stable, functionalized quantum-dot barcodes. ACS Applied Materials & Interfaces 6:2745–2752. doi:10.1021/am405285u

    Article  Google Scholar 

  • Song T et al (2011) Structural design and preparation of high-performance QD-encoded polymer beads for suspension arrays. J Mater Chem 21:2169–2177. doi:10.1039/C0JM02447C

    Article  Google Scholar 

  • Studer-Rohr I, Schlatter J, Dietrich RD (2000) Kinetic parameters and intraindividual fluctuations of ochratoxin A plasma levels in humans. Arch Toxicol 74:499–510. doi:10.1007/s002040000157

    Article  Google Scholar 

  • Sun AL, Zhang Y, Sun GP, Wang X, Tang D (2015) Homogeneous electrochemical detection of ochratoxin A in foodstuff using aptamer-graphene oxide nanosheets and DNase I-based target recycling reaction Biosensors and Bioelectronics

  • Tsai HY, Gao BZ, Yang SF, Li CS, Fuh CB (2013) Detection of alpha-fetoprotein in magnetic immunoassay of thin channels using biofunctional nanoparticles. J Nanopart Res 16:1–8. doi:10.1007/s11051-013-2182-4

    Google Scholar 

  • Wang B, Wu Y, Chen Y, Weng B, Xu L, Li C (2016) A highly sensitive aptasensor for OTA detection based on hybridization chain reaction and fluorescent perylene probe. Biosens Bioelectron 81:125–130

    Article  Google Scholar 

  • Wang H-Q, Liu T-C, Cao Y-C, Huang Z-L, Wang J-H, Li X-Q, Zhao Y-D (2006) A flow cytometric assay technology based on quantum dots-encoded beads. Anal Chim Acta 580:18–23. doi:10.1016/j.aca.2006.07.048

    Article  Google Scholar 

  • Wu S, Duan N, Zhu C, Ma X, Wang M, Wang Z (2011) Magnetic nanobead-based immunoassay for the simultaneous detection of aflatoxin B1 and ochratoxin A using upconversion nanoparticles as multicolor labels Biosens Bioelectron 30:35–42 doi: 10.1016/j.bios.2011.08.023

  • Xi D, Luo X, Lu Q, Yao K, Liu Z, Ning Q (2008) The detection of HBV DNA with gold-coated iron oxide nanoparticle gene probes. J Nanopart Res 10:393–400. doi:10.1007/s11051-007-9263-1

    Article  Google Scholar 

  • Yang J, Gao P, Liu Y, Li R, Ma H, Du B, Wei Q (2015) Label-free photoelectrochemical immunosensor for sensitive detection of ochratoxin A. Biosensors and Bioelectronics 64:13–18. doi:10.1016/j.bios.2014.08.025

    Article  Google Scholar 

  • Yue S et al (2014) Simultaneous detection of ochratoxin A and fumonisin B1 in cereal samples using an aptamer-photonic crystal encoded suspension array. Anal Chem 86:11797–11802

    Article  Google Scholar 

  • Zhang L, Dong W-F, Sun H-B (2013) Multifunctional superparamagnetic iron oxide nanoparticles: design, synthesis and biomedical photonic applications. Nanoscale 5:7664–7684. doi:10.1039/C3NR01616A

    Article  Google Scholar 

  • Zhang L et al (2012) Magnetic/upconversion luminescent mesoparticles of Fe3O4@LaF3:Yb3+, Er3+ for dual-modal bioimaging. Chem Commun 48:11238–11240. doi:10.1039/C2CC36059D

    Article  Google Scholar 

  • Zhang Y et al (2016) Multifunctional microspheres encoded with upconverting nanocrystals and magnetic nanoparticles for rapid separation and immunoassays. ACS Appl Mater Interfaces 8:745–753. doi:10.1021/acsami.5b09913

    Article  Google Scholar 

  • Zhu Z et al (2015) An aptamer based surface plasmon resonance biosensor for the detection of ochratoxin A in wine and peanut oil. Biosens Bioelectron 65:320–326

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (31401578, 51373117, 51303126, 51573128, and 81402575) and Tianjin Natural Science Foundation (13JCZDJC33200 and 15JCQNJC03100).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhenyu Liao or Hanjie Wang.

Ethics declarations

Conflict of interest

Zhenyu Liao, Ying Zhang, Lin Su, Jin Chang, and Hanjie Wang declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human or animal subjects.

Informed consent

Not applicable.

Additional information

Zhenyu Liao and Ying Zhang contributed equally to this work.

Electronic supplementary material

ESM 1

(PDF 490 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, Z., Zhang, Y., Su, L. et al. Application of upconversion luminescent-magnetic microbeads with weak background noise and facile separation in ochratoxin A detection. J Nanopart Res 19, 60 (2017). https://doi.org/10.1007/s11051-016-3717-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-016-3717-2

Keywords

Navigation