Skip to main content
Log in

Tribological performance of nanoparticles as lubricating oil additives

  • Review
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The prospect of modern tribology has been expanded with the advent of nanomaterial-based lubrication systems, whose development was facilitated by the nanotechnology in recent years. In literature, a variety of nanoparticles have been used as lubricant additives with potentially interesting friction and wear properties. To date, although there has been a great deal of experimental research on nanoparticles as lubricating oil additives, many aspects of their tribological behavior are yet to be fully understood. With growing number of possibilities, the key question is: what types of nanoparticles act as a better lubricating oil additive and why? To answer this question, this paper reviews main types of nanoparticles that have been used as lubricants additives and outlines the mechanisms by which they are currently believed to function. Significant aspects of their tribological behavior such as dispersion stability and morphology are also highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Abdullah MIHC, Abdollah MF, Amiruddin H, Tamaldin N, Nuri NRM (2014) Effect of hBN/Al2O3 nanoparticle additives on the tribological performance of engine oil. Jurnal Teknologi 66(3):1–6

  • Abdullah MIHC, Abdollah MFB, Tamaldin N, Amiruddin H, Mat Nuri NR, Gachot C, Kaleli H (2016) Effect of hexagonal boron nitride nanoparticles as an additive on the extreme pressure properties of engine oil Industrial Lubrication and Tribology 68(4):441–445

  • Akbulut M (2012) Nanoparticle-based lubrication systems. J Powder Metall Min 2012

  • Ali MKA, Xianjun H (2015) Improving the tribological behavior of internal combustion engines via the addition of nanoparticles to engine oils. Nanotechnol Rev 4:347–358

    Article  Google Scholar 

  • Alves SM, Barros BS, Trajano MF, Ribeiro KSB, Moura E (2013) Tribological behavior of vegetable oil-based lubricants with nanoparticles of oxides in boundary lubrication conditions. Tribol Int 65:28–36. doi:10.1016/j.triboint.2013.03.027

    Article  Google Scholar 

  • Amiruddin H, Abdollah M, Idris A, Abdullah M, Tamaldin N (2015) Stability of nano-oil by pH control in stationary conditions. Proc Mech Eng Res Day 2015 2015:55–56

    Google Scholar 

  • Arumugam S, Sriram G (2014) Synthesis and characterization of rapeseed oil bio-lubricant dispersed with nano copper oxide: its effect on wear and frictional behavior of piston ring–cylinder liner combination. Proc Inst Mech Eng Part J 228:1308–1318

    Article  Google Scholar 

  • Asrul M, Zulkifli NWM, Masjuki HH, Kalam MA (2013) Tribological properties and lubricant mechanism of nanoparticle in engine oil. Procedia Eng 68:320–325. doi:10.1016/j.proeng.2013.12.186

    Article  Google Scholar 

  • Azman SSN, Zulkifli NWM, Masjuki H, Gulzar M, Zahid R (2016) Study of tribological properties of lubricating oil blend added with graphene nanoplatelets. J Mater Res. doi:10.1557/jmr.2016.24

    Google Scholar 

  • Bakunin V, Suslov AY, Kuzmina G, Parenago O, Topchiev A (2004) Synthesis and application of inorganic nanoparticles as lubricant components—a review. J Nanopart Res 6:273–284

    Article  Google Scholar 

  • Bakunin V, Suslov AY, Kuzmina G, Parenago O (2005) Recent achievements in the synthesis and application of inorganic nanoparticles as lubricant components. Lubr Sci 17:127–145

    Article  Google Scholar 

  • Castillo Marcano SJ, Bensaid S, Deorsola FA, Russo N, Fino D (2014) Nanolubricants for diesel engines: related emissions and compatibility with the after-treatment catalysts. Tribol Int 72:198–207. doi:10.1016/j.triboint.2013.10.018

    Article  Google Scholar 

  • Çelik ON, Ay N, Göncü Y (2013) Effect of nano hexagonal boron nitride lubricant additives on the friction and wear properties of AISI 4140 steel. Part Sci Technol 31:501–506. doi:10.1080/02726351.2013.779336

    Article  Google Scholar 

  • Chen S, Liu W (2006) Oleic acid capped PbS nanoparticles: synthesis, characterization and tribological properties. Mater Chem Phys 98:183–189. doi:10.1016/j.matchemphys.2005.09.043

    Article  Google Scholar 

  • Chiñas-Castillo F, Spikes H (2003) Mechanism of action of colloidal solid dispersions. J Tribol 125:552–557

    Article  Google Scholar 

  • Cho Y, Park J, Ku B, Lee J, Park W-G, Lee J, Kim SH (2012) Synergistic effect of a coating and nano-oil lubricant on the tribological properties of friction surfaces. Int J Precis Eng Manuf 13:97–102. doi:10.1007/s12541-012-0013-7

    Article  Google Scholar 

  • Choi Y, Lee C, Hwang Y, Park M, Lee J, Choi C, Jung M (2009) Tribological behavior of copper nanoparticles as additives in oil. Curr Appl Phys 9:e124–e127

    Article  Google Scholar 

  • Chou R, Battez AH, Cabello JJ, Viesca JL, Osorio A, Sagastume A (2010) Tribological behavior of polyalphaolefin with the addition of nickel nanoparticles. Tribol Int 43:2327–2332. doi:10.1016/j.triboint.2010.08.006

    Article  Google Scholar 

  • Dai W, Kheireddin B, Gao H, Liang H (2016) Roles of nanoparticles in oil Lubrication Tribology International. doi:10.1016/j.triboint.2016.05.020

    Google Scholar 

  • Das SK, Bedar A, Kannan A, Jasuja K (2015) Aqueous dispersions of few-layer-thick chemically modified magnesium diboride nanosheets by ultrasonication assisted exfoliation. Sci Rep 5:10522 doi:10.1038/srep10522. http://www.nature.com/articles/srep10522#supplementary-information

  • Demas NG, Timofeeva EV, Routbort JL, Fenske GR (2012) Tribological effects of BN and MoS2 nanoparticles added to polyalphaolefin oil in piston skirt/cylinder liner tests. Tribol Lett 47:91–102

    Article  Google Scholar 

  • Einstein A (1905) On the movement of small particles suspended in a stationary liquid demanded by the molecular-kinetic theory of heart. Annalen der Physik 17:549–560

    Article  Google Scholar 

  • Ettefaghi E-O-l, Ahmadi H, Rashidi A, Mohtasebi S-S (2013) Investigation of the anti-wear properties of nano additives on sliding bearings of internal combustion engines. Int J Precis Eng Manuf 14:805–809. doi:10.1007/s12541-013-0105-z

    Article  Google Scholar 

  • Falvo MR, Superfine R (2000) Mechanics and friction at the nanometer scale. J Nanopart Res 2:237–248. doi:10.1023/a:1010017130136

    Article  Google Scholar 

  • Fernandez J, Viesca J, Hernandez Battez A (2008) Tribological behaviour of copper oxide nanoparticle suspension. Paper presented at the Lubrication Management and Technology Conference and Exhibition, San Sebastian; 2008

  • Gao C, Wang Y, Hu D, Pan Z, Xiang L (2013) Tribological properties of magnetite nanoparticles with various morphologies as lubricating additives. J Nanopart Res 15:1–10. doi:10.1007/s11051-013-1502-z

    Google Scholar 

  • Ghaednia H (2014) An analytical and experimental investigation of nanoparticle lubricants. Auburn, Auburn University

  • Ginzburg B, Shibaev L, Kireenko O, Shepelevskii A, Baidakova M, Sitnikova A (2002) Antiwear effect of fullerene C 6 0 additives to lubricating oils. Russ J Appl Chem 75:1330–1335

    Article  Google Scholar 

  • Greco A, Mistry K, Sista V, Eryilmaz O, Erdemir A (2011) Friction and wear behaviour of boron based surface treatment and nano-particle lubricant additives for wind turbine gearbox applications. Wear 271:1754–1760. doi:10.1016/j.wear.2010.11.060

    Article  Google Scholar 

  • Greenberg R, Halperin G, Etsion I, Tenne R (2004) The effect of WS2 nanoparticles on friction reduction in various lubrication regimes. Tribol Lett 17:179–186

    Article  Google Scholar 

  • Gullac B, Akalin O (2010) Frictional characteristics of IF-WS2 nanoparticles in simulated engine conditions. Tribol Trans 53:939–947

    Article  Google Scholar 

  • Gulzar M, Masjuki H, Kalam M, Varman M, Mufti R, Zahid R, Yunus R (2015a) AW/EP behavior of WS2 nanoparticles added to vegetable oil-based lubricant. In: Proceedings of Malaysian International Tribology Conference 2015. Malaysian Tribology Society, pp 194–195

  • Gulzar M et al (2015b) Improving the AW/EP ability of chemically modified palm oil by adding CuO and MoS2 nanoparticles. Tribol Int 88:271–279. doi:10.1016/j.triboint.2015.03.035

    Article  Google Scholar 

  • Hernandez Battez A, Fernandez Rico JE, Navas Arias A, Viesca Rodriguez JL, Chou Rodriguez R, Diaz Fernandez JM (2006) The tribological behaviour of ZnO nanoparticles as an additive to PAO6. Wear 261:256–263. doi:10.1016/j.wear.2005.10.001

    Article  Google Scholar 

  • Hernández Battez A, González R, Felgueroso D, Fernández JE, del Rocío Fernández M, García MA, Peñuelas I (2007) Wear prevention behaviour of nanoparticle suspension under extreme pressure conditions. Wear 263:1568–1574. doi:10.1016/j.wear.2007.01.093

    Article  Google Scholar 

  • Hernández Battez A et al (2008a) CuO, ZrO2 and ZnO nanoparticles as antiwear additive in oil lubricants. Wear 265:422–428

    Article  Google Scholar 

  • Hernández Battez A et al (2008b) CuO, ZrO2 and ZnO nanoparticles as antiwear additive in oil lubricants. Wear 265:422–428. doi:10.1016/j.wear.2007.11.013

    Article  Google Scholar 

  • Hu ZS, Lai R, Lou F, Wang LG, Chen ZL, Chen GX, Dong JX (2002) Preparation and tribological properties of nanometer magnesium borate as lubricating oil additive. Wear 252:370–374. doi:10.1016/S0043-1648(01)00862-6

    Article  Google Scholar 

  • Hu KH, Huang F, Hu XG, Xu YF, Zhou YQ (2011) Synergistic effect of nano-MoS2 and anatase nano-TiO2 on the lubrication properties of MoS2/TiO2 nano-clusters. Tribol Lett 43:77–87

    Article  Google Scholar 

  • Jatti VS, Singh TP (2015) Copper oxide nano-particles as friction-reduction and anti-wear additives in lubricating oil. J Mech Sci Technol 29:793–798. doi:10.1007/s12206-015-0141-y

    Article  Google Scholar 

  • Jiao D, Zheng S, Wang Y, Guan R, Cao B (2011) The tribology properties of alumina/silica composite nanoparticles as lubricant additives. Appl Surf Sci 257:5720–5725. doi:10.1016/j.apsusc.2011.01.084

    Article  Google Scholar 

  • Joly-Pottuz L, Vacher B, Ohmae N, Martin JM, Epicier T (2008) Anti-wear and friction reducing mechanisms of carbon nano-onions as lubricant additives. Tribol Lett 30:69–80. doi:10.1007/s11249-008-9316-3

    Article  Google Scholar 

  • Kalin M, Kogovšek J, Remškar M (2012) Mechanisms and improvements in the friction and wear behavior using MoS2 nanotubes as potential oil additives. Wear 280–281:36–45. doi:10.1016/j.wear.2012.01.011

    Article  Google Scholar 

  • Kheireddin BA (2013) Tribological properties of nanopartice-based lubrication systems. Texas A&M University, College Station

    Google Scholar 

  • Kolodziejczyk L, Martinez-Martinez D, Rojas T, Fernandez A, Sanchez-Lopez J (2007) Surface-modified Pd nanoparticles as a superior additive for lubrication. J Nanopart Res 9:639–645

    Article  Google Scholar 

  • Koshy CP, Rajendrakumar PK, Thottackkad MV (2015) Evaluation of the tribological and thermo-physical properties of coconut oil added with MoS2 nanoparticles at elevated temperatures. Wear 330–331:288–308. doi:10.1016/j.wear.2014.12.044

    Article  Google Scholar 

  • Kumar Dubey M, Bijwe J, Ramakumar S (2013) PTFE based nano-lubricants. Wear 306:80–88

    Article  Google Scholar 

  • Laad M, Jatti VKS (2016) Titanium oxide nanoparticles as additives in engine oil. J King Saud Univ Eng Sci

  • Lee C-G, Hwang Y-J, Choi Y-M, Lee J-K, Choi C, Oh J-M (2009a) A study on the tribological characteristics of graphite nano lubricants. Int J Precis Eng Manuf 10:85–90

    Article  Google Scholar 

  • Lee J et al (2009b) Application of fullerene-added nano-oil for lubrication enhancement in friction surfaces. Tribol Int 42:440–447

    Article  Google Scholar 

  • Lee K, Hwang Y, Cheong S, Choi Y, Kwon L, Lee J, Kim SH (2009c) Understanding the role of nanoparticles in nano-oil lubrication. Tribol Lett 35:127–131. doi:10.1007/s11249-009-9441-7

    Article  Google Scholar 

  • Lee K, Hwang Y, Cheong S, Kwon L, Kim S, Lee J (2009d) Performance evaluation of nano-lubricants of fullerene nanoparticles in refrigeration mineral oil. Curr Appl Phys 9:e128–e131

    Article  Google Scholar 

  • Li B, Wang X, Liu W, Xue Q (2006) Tribochemistry and antiwear mechanism of organic–inorganic nanoparticles as lubricant additives. Tribol Lett 22:79–84

    Article  Google Scholar 

  • Li W, Zheng S, Cao B, Ma S (2011) Friction and wear properties of ZrO2/SiO2 composite nanoparticles. J Nanopart Res 13:2129–2137. doi:10.1007/s11051-010-9970-x

    Article  Google Scholar 

  • Liu G, Li X, Qin B, Xing D, Guo Y, Fan R (2004) Investigation of the mending effect and mechanism of copper nano-particles on a tribologically stressed surface. Tribol Lett 17:961–966. doi:10.1007/s11249-004-8109-6

    Article  Google Scholar 

  • Liu G, Li X, Lu N, Fan R (2005) Enhancing AW/EP property of lubricant oil by adding nano Al/Sn particles. Tribol Lett 18:85–90. doi:10.1007/s11249-004-1760-0

    Article  Google Scholar 

  • Luo T, Wei X, Huang X, Huang L, Yang F (2014) Tribological properties of Al2O3 nanoparticles as lubricating oil additives. Ceram Int 40:7143–7149. doi:10.1016/j.ceramint.2013.12.050

    Article  Google Scholar 

  • Ma S, Zheng S, Cao D, Guo H (2010) Anti-wear and friction performance of ZrO2 nanoparticles as lubricant additive. Particuology 8:468–472. doi:10.1016/j.partic.2009.06.007

    Article  Google Scholar 

  • Martin JM, Ohmae N (2008) Nanolubricants, vol 13. John Wiley & Sons, New York

    Book  Google Scholar 

  • Min Y, Akbulut M, Kristiansen K, Golan Y, Israelachvili J (2008) The role of interparticle and external forces in nanoparticle assembly. Nat Mater 7:527–538

    Article  Google Scholar 

  • Nallasamy P, Saravanakumar N, Nagendran S, Suriya E, Yashwant D (2014) Tribological investigations on MoS2-based nanolubricant for machine tool slideways. Proc Inst Mech Eng Part J. doi:10.1177/1350650114556394

    Google Scholar 

  • Ohmae N, Martin JM, Mori S (2005) Micro and nanotribology. ASME Press, New York

    Book  Google Scholar 

  • Padgurskas J, Rukuiza R, Prosyčevas I, Kreivaitis R (2013) Tribological properties of lubricant additives of Fe, Cu and Co nanoparticles. Tribol Int 60:224–232. doi:10.1016/j.triboint.2012.10.024

    Article  Google Scholar 

  • Pavlidou S, Papaspyrides CD (2008) A review on polymer–layered silicate nanocomposites. Prog Polym Sci 33:1119–1198. doi:10.1016/j.progpolymsci.2008.07.008

    Article  Google Scholar 

  • Peña-Parás L, Taha-Tijerina J, Garza L, Maldonado-Cortés D, Michalczewski R, Lapray C (2015) Effect of CuO and Al2O3 nanoparticle additives on the tribological behavior of fully formulated oils. Wear 332–333:1256–1261. doi:10.1016/j.wear.2015.02.038

    Article  Google Scholar 

  • Peng DX, Chen CH, Kang Y, Chang YP, Chang SY (2010a) Size effects of SiO2 nanoparticles as oil additives on tribology of lubricant. Ind Lubr Tribol 62:111–120. doi:10.1108/00368791011025656

    Article  Google Scholar 

  • Peng DX, Kang Y, Chen SK, Shu FC, Chang YP (2010b) Dispersion and tribological properties of liquid paraffin with added aluminum nanoparticles. Ind Lubr Tribol 62:341–348. doi:10.1108/00368791011076236

    Article  Google Scholar 

  • Rabaso P (2014) Nanoparticle-doped lubricants: potential of Inorganic Fullerene-like (IF-) molybdenum disulfide for automotive applications. INSA de Lyon

  • Rabaso P et al (2014) Boundary lubrication: influence of the size and structure of inorganic fullerene-like MoS2 nanoparticles on friction and wear reduction. Wear 320:161–178. doi:10.1016/j.wear.2014.09.001

    Article  Google Scholar 

  • Ran X, Yu X, Zou Q (2016) Effect of particle concentration on tribological properties of ZnO nanofluids. Tribol Trans. doi:10.1080/10402004.2016.1154233

    Google Scholar 

  • Rapoport L, Bilik Y, Feldman Y, Homyonfer M, Cohen S, Tenne R (1997) Hollow nanoparticles of WS 2 as potential solid-state lubricants. Nature 387:791–793

    Article  Google Scholar 

  • Rapoport L, Leshchinsky V, Lvovsky M, Nepomnyashchy O, Volovik Y, Tenne R (2002) Mechanism of friction of fullerenes. Ind Lubr Tribol 54:171–176

    Article  Google Scholar 

  • Rapoport L et al (2003) Tribological properties of WS2 nanoparticles under mixed lubrication. Wear 255:785–793. doi:10.1016/s0043-1648(03)00044-9

    Article  Google Scholar 

  • Reeves CJ (2013) An experimental investigation characterizing the tribological performance of natural and synthetic biolubricants composed of carboxylic acids for energy conservation and sustainability. The University of Wisconsin-Milwaukee, Milwaukee

    Google Scholar 

  • Saidur R, Kazi S, Hossain M, Rahman M, Mohammed H (2011) A review on the performance of nanoparticles suspended with refrigerants and lubricating oils in refrigeration systems. Renew Sustain Energy Rev 15:310–323

    Article  Google Scholar 

  • Schiøtz J, Jacobsen KW (2003) A maximum in the strength of nanocrystalline copper. Science 301:1357–1359

    Article  Google Scholar 

  • Sgroi M et al (2015) Friction reduction benefits in valve-train system using IF-MoS2 added engine oil. Tribol Trans 58:207–214. doi:10.1080/10402004.2014.960540

    Article  Google Scholar 

  • Shahnazar S, Bagheri S, Hamid SBA (2016) Enhancing lubricant properties by nanoparticle additives. Int J Hydrog Energy 41:3153

    Article  Google Scholar 

  • Singh KGK, Suresh R (2012) Behavior of composite nanofluids under extreme pressure condition. In: International Journal of Engineering Research and Technology, vol 9. ESRSA Publications

  • Song X, Zheng S, Zhang J, Li W, Chen Q, Cao B (2012) Synthesis of monodispersed ZnAl2O4 nanoparticles and their tribology properties as lubricant additives. Mater Res Bull 47:4305–4310

    Article  Google Scholar 

  • Spikes H (2015) Friction modifier additives. Tribol Lett 60:1–26

    Article  Google Scholar 

  • Su Y, Gong L, Chen D (2015) An investigation on tribological properties and lubrication mechanism of graphite nanoparticles as vegetable based oil additive. J Nanomater 2015:7. doi:10.1155/2015/276753

    Google Scholar 

  • Sui T, Song B, Zhang F, Yang Q (2015) Effect of particle size and ligand on the tribological properties of amino functionalized hairy silica nanoparticles as an additive to polyalphaolefin. J Nanomater 2015:9. doi:10.1155/2015/492401

    Article  Google Scholar 

  • Sui T, Song B, Zhang F, Yang Q (2016) Effects of functional groups on the tribological properties of hairy silica nanoparticles as an additive to polyalphaolefin RSC. Advances 6:393–402

    Google Scholar 

  • Sunqing Q, Junxiu D, Guoxu C (1999) Tribological properties of CeF3 nanoparticles as additives in lubricating oils. Wear 230:35–38

    Article  Google Scholar 

  • Tao X, Jiazheng Z, Kang X (1996) The ball-bearing effect of diamond nanoparticles as an oil additive. J Phys D Appl Phys 29:2932

    Article  Google Scholar 

  • Tevet O, Von-Huth P, Popovitz-Biro R, Rosentsveig R, Wagner HD, Tenne R (2011) Friction mechanism of individual multilayered nanoparticles. Proc Natl Acad Sci 108:19901–19906

    Article  Google Scholar 

  • Thakur MRN, Srinivas DV, Jain DAK (2016) Anti-wear, anti-friction and extreme pressure properties of motor bike engine oil dispersed with molybdenum disulphide nano-particles. Tribol Trans. doi:10.1080/10402004.2016.1142034

    Google Scholar 

  • Thottackkad MV, Perikinalil RK, Kumarapillai PN (2012) Experimental evaluation on the tribological properties of coconut oil by the addition of CuO nanoparticles. Int J Precis Eng Manuf 13:111–116. doi:10.1007/s12541-012-0015-5

    Article  Google Scholar 

  • Verma A, Jiang W, Abu Safe HH, Brown WD, Malshe AP (2008) Tribological behavior of deagglomerated active inorganic nanoparticles for advanced lubrication. Tribol Trans 51:673–678. doi:10.1080/10402000801947691

    Article  Google Scholar 

  • Viesca J, Hernández Battez A, González R, Chou R, Cabello JJ (2011a) Antiwear properties of carbon-coated copper nanoparticles used as an additive to a polyalphaolefin. Tribol Int 44:829–833

    Article  Google Scholar 

  • Viesca JL, Hernández Battez A, González R, Chou R, Cabello JJ (2011b) Antiwear properties of carbon-coated copper nanoparticles used as an additive to a polyalphaolefin. Tribol Int 44:829–833. doi:10.1016/j.triboint.2011.02.006

    Article  Google Scholar 

  • Wan Q, Jin Y, Sun P, Ding Y (2014) Rheological and tribological behaviour of lubricating oils containing platelet MoS2 nanoparticles. J Nanopart Res 16:1–9

    Article  Google Scholar 

  • Wan Q, Jin Y, Sun P, Ding Y (2015) Tribological behaviour of a lubricant oil containing boron nitride nanoparticles. Procedia Eng 102:1038–1045. doi:10.1016/j.proeng.2015.01.226

    Article  Google Scholar 

  • Wang X-B, Liu W-M (2013) Nanoparticle-based lubricant additives. In: Encyclopedia of tribology. Berlin, Springer, pp 2369–2376

  • Weertman J (1993) Hall-Petch strengthening in nanocrystalline metals. Mater Sci Eng A 166:161–167

    Article  Google Scholar 

  • Wu YY, Tsui WC, Liu TC (2007) Experimental analysis of tribological properties of lubricating oils with nanoparticle additives. Wear 262:819–825. doi:10.1016/j.wear.2006.08.021

    Article  Google Scholar 

  • Xiaodong Z, Xun F, Huaqiang S, Zhengshui H (2007) Lubricating properties of Cyanex 302-modified MoS2 microspheres in base oil 500SN. Lubr Sci 19:71–79

    Article  Google Scholar 

  • Xie H, Jiang B, He J, Xia X, Pan F (2015) Lubrication performance of MoS2 and SiO2 nanoparticles as lubricant additives in magnesium alloy-steel contacts. Tribol Int. doi:10.1016/j.triboint.2015.08.009

    Google Scholar 

  • Yadgarov L, Petrone V, Rosentsveig R, Feldman Y, Tenne R, Senatore A (2013) Tribological studies of rhenium doped fullerene-like MoS2 nanoparticles in boundary, mixed and elasto-hydrodynamic lubrication conditions. Wear 297:1103–1110. doi:10.1016/j.wear.2012.11.084

    Article  Google Scholar 

  • Ye W, Cheng T, Ye Q, Guo X, Zhang Z, Dang H (2003) Preparation and tribological properties of tetrafluorobenzoic acid-modified TiO2 nanoparticles as lubricant additives. Mater Sci Eng A 359:82–85

    Article  Google Scholar 

  • Yu H-l, Xu Y, Shi P-J, Xu B-S, Wang X-L, Liu Q (2008) Tribological properties and lubricating mechanisms of Cu nanoparticles in lubricant. Trans Nonferrous Metals Soc China 18:636–641. doi:10.1016/S1003-6326(08)60111-9

    Article  Google Scholar 

  • Yu W, Xie H (2012) A review on nanofluids: preparation, stability mechanisms, and applications. J Nanomater 2012:1

    Google Scholar 

  • Zainal N, Zulkifli N, Yusoff M, Masjuki H, Yunus R (2015) The feasibility study of CaCO3 derived from cockleshell as nanoparticle in chemically modified lubricant. In: Proceedings of Malaysian international tribology conference 2015. Malaysian Tribology Society, pp 209-210

  • Zhang Y, Xu Y, Yang Y, Zhang S, Zhang P, Zhang Z (2015) Synthesis and tribological properties of oil-soluble copper nanoparticles as environmentally friendly lubricating oil additives. Ind Lubr Tribol 67:227–232. doi:10.1108/ILT-10-2012-0098

    Article  Google Scholar 

  • Zhao Y, Zhang Z, Dang H (2004) Fabrication and tribological properties of Pb nanoparticles. J Nanopart Res 6:47–51. doi:10.1023/B:NANO.0000023223.79545.af

    Article  Google Scholar 

  • Zhou J, Wu Z, Zhang Z, Liu W, Xue Q (2000) Tribological behavior and lubricating mechanism of Cu nanoparticles in oil. Tribol Lett 8:213–218

    Article  Google Scholar 

  • Zhu J, Bi H, Wang Y, Wang X, Yang X, Lu L (2008) CuO nanocrystals with controllable shapes grown from solution without any surfactants. Mater Chem Phys 109:34–38

    Article  Google Scholar 

  • Zhu D, Li X, Wang N, Wang X, Gao J, Li H (2009) Dispersion behavior and thermal conductivity characteristics of Al2O3–H2O nanofluids. Curr Appl Phys 9:131–139

    Article  Google Scholar 

  • Zin V, Agresti F, Barison S, Colla L, Fabrizio M (2015) Influence of Cu, TiO2 nanoparticles and carbon nano-horns on tribological properties of engine oil. J Nanosci Nanotechnol 15:3590–3598. doi:10.1166/jnn.2015.9839

    Article  Google Scholar 

  • Zulkifli NWM, Kalam MA, Masjuki HH, Yunus R (2013) Experimental analysis of tribological properties of biolubricant with nanoparticle additive. Procedia Eng 68:152–157. doi:10.1016/j.proeng.2013.12.161

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the University of Malaya, which made this study possible through the high impact research, Project title: “Development of Alternative and Renewable Energy Carrier” UM.C/HIR/MOHE/ENG/60 and Grand Challenge (GC) No: GC001-14AET.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Gulzar or H. H. Masjuki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gulzar, M., Masjuki, H.H., Kalam, M.A. et al. Tribological performance of nanoparticles as lubricating oil additives. J Nanopart Res 18, 223 (2016). https://doi.org/10.1007/s11051-016-3537-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-016-3537-4

Keywords

Navigation