Skip to main content
Log in

Lubrication Characteristics of Oils Containing Nanoadditives: Influencing Parameters, Market Scenario and Advancements

  • Review Paper
  • Published:
Journal of The Institution of Engineers (India): Series D Aims and scope Submit manuscript

Abstract

Friction and wear being widely associated with the different mechanical systems contributes to substantial loss of energy. Different solutions have been proposed to reduce the energy loss caused by friction. With developments in the area of nanotechnology, the use of nanoparticles in lubrication has gained much interest in the recent years. This paper deals with the role of nanoadditives in lubricants in improving the tribological properties, thereby helping in reducing the losses. Different types of additives and their functional performance have been discussed. Also, special focus has been laid down on various parameters that influence the tribological characteristics. Moreover, the market scenario of lubricating oils and their environmental impact have also been discussed. From the overall study and the research findings, it came to the fore that a careful selection of all the influencing parameters is required to obtain better tribological characteristics. Moreover, there is lot of scope in understanding the various mechanisms of these nanoparticles in the oils and the synergetic effect of various nanoadditives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

(Source: SCOPUS)

Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. A. Anand, M.I.U. Haq, K. Vohra, A. Raina, M.F. Wani, Role of green tribology in sustainability of mechanical systems: a state of the art survey. Mater. Today Proc. 4(2), 3659–3665 (2017)

    Google Scholar 

  2. W.K. Shafi, A. Raina, M.I.U. Haq, A. Khajuria, Applications of industrial tribology. Int. Res. J. Eng. Technol. 5(1), 1285–1289 (2018)

    Google Scholar 

  3. R. Anand, M.I.U. Haq, A. Raina, Bio-based nano-lubricants for sustainable manufacturing, in Nanomaterials and environmental biotechnology. ed. by I. Bhushan, V.K. Singh, D.K. Tripathi (Springer, Cham, 2020), pp. 333–380

    Google Scholar 

  4. R. Anand, A. Raina, M.I. Ul Haq, M.J. Mir, O. Gulzar, M.F. Wani, Synergism of TiO2 and graphene as nano-additives in bio-based cutting fluid-an experimental investigation. Tribol. Trans. (2020). https://doi.org/10.1080/10402004.2020.1842953

    Article  Google Scholar 

  5. Shafi, W. K., Raina, A., Haq, M. I. U., &Khajuria, A. (2018b). Interdisciplinary aspects of Tribology. International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395–0056 Volume: 05 Issue: 02| Feb.

  6. W. Dai, B. Kheireddin, H. Gao, H. Liang, Roles of nanoparticles in oil lubrication. Tribol. Int. 102, 88–98 (2016)

    Google Scholar 

  7. X. Hu, On the size effect of molybdenum disulfide particles on tribological performance. Ind. Lubr. Tribol. 57(6), 255–259 (2005)

    Google Scholar 

  8. K.H. Hu, X.G. Hu, Y.F. Xu, F. Huang, J.S. Liu, The effect of morphology on the tribological properties of MoS2 in liquid paraffin. Tribol. Lett. 40(1), 155–165 (2010)

    Google Scholar 

  9. J. Kogovšek, M. Kalin, Various MoS2-, WS2-and C-based micro-and nanoparticles in boundary lubrication. Tribol. Lett. 53(3), 585–597 (2014)

    Google Scholar 

  10. I. Lahouij, B. Vacher, J.M. Martin, F. Dassenoy, IF-MoS2 based lubricants: Influence of size, shape and crystal structure. Wear 296(1), 558–567 (2012)

    Google Scholar 

  11. J. Kogovšek, M. Remškar, A. Mrzel, M. Kalin, Influence of surface roughness and running-in on the lubrication of steel surfaces with oil containing MoS2 nanotubes in all lubrication regimes. Tribol. Int. 61, 40–47 (2013)

    Google Scholar 

  12. S. Wos, W. Koszela, P. Pawlus, J. Drabik, E. Rogos, Effects of surface texturing and kind of lubricant on the coefficient of friction at ambient and elevated temperatures. Tribol. Int. 117, 174–179 (2018)

    Google Scholar 

  13. R. Aziz, M.I.U. Haq, A. Raina, Effect of surface texturing on friction behaviour of 3D printed polylactic acid (PLA). Polym. Testing 85, 106434 (2020)

    Google Scholar 

  14. M.I.D.B. Bouchet, J.M. Martin, J. Avila, M. Kano, K. Yoshida, T. Tsuruda, M.C. Asensio, Diamond-like carbon coating under oleic acid lubrication: Evidence for graphene oxide formation in superlow friction. Sci. Rep. 7, 46394 (2017)

    Google Scholar 

  15. M. Sedlaček, B. Podgornik, J. Vižintin, Influence of surface preparation on roughness parameters, friction and wear. Wear. Elsevier 266(3–4), 482–487 (2009)

    Google Scholar 

  16. L. Kerni, A. Raina, M.I.U. Haq, Friction and wear performance of olive oil containing nanoparticles in boundary and mixed lubrication regimes. Wear 426, 819–827 (2019)

    Google Scholar 

  17. W.K. Shafi, A. Raina, M.I.U. Haq, Performance evaluation of hazelnut oil with copper nanoparticles-a new entrant for sustainable lubrication. Ind. Lubr. Tribol. (2019). https://doi.org/10.1108/ILT-07-2018-0257

    Article  Google Scholar 

  18. W.K. Shafi, A. Raina, M.I. Ul Haq, Friction and wear characteristics of vegetable oils using nanoparticles for sustainable lubrication. Tribol. Mater. Surf. Interfaces 12(1), 27–43 (2018)

    Google Scholar 

  19. W.K. Shafi, A. Raina, M.I. Ul Haq, Tribological performance of avocado oil containing copper nanoparticles in mixed and boundary lubrication regime. Ind. Lubr. Tribol. 70(5), 865–871 (2018)

    Google Scholar 

  20. G. Gupta, M.I.U. Haq, A. Raina, W.K. Shafi, Effect of epoxidation and nanoparticle addition on the rheological and tribological properties of canola oil. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. (2021). https://doi.org/10.1177/13506501211016181

    Article  Google Scholar 

  21. C.H. Chan, S.W. Tang, N.K. Mohd, W.H. Lim, S.K. Yeong, Z. Idris, Tribological behavior of biolubricant base stocks and additives. Renew. Sustain. Energy Rev. 93, 145–157 (2018)

    Google Scholar 

  22. Y. Singh, A. Farooq, A. Raza, M.A. Mahmood, S. Jain, Sustainability of a non-edible vegetable oil based bio-lubricant for automotive applications: a review. Process Saf. Environ. Prot. 111, 701–713 (2017)

    Google Scholar 

  23. P.D. Srivyas, M.S. Charoo, A review on tribological characterization of lubricants with nano additives for automotive applications. Tribol. Ind. 40(4), 594 (2018)

    Google Scholar 

  24. A.H. Battez, R. González, J.L. Viesca, J.E. Fernández, J.D. Fernández, A. Machado, J. Riba. CuO, ZrO2 and ZnO nanoparticles as antiwear additive in oil lubricants. Wear 265(3-4), 422-428 (2008)

  25. A.H. Battez, R. González, D. Felgueroso, J.E. Fernández, M. del Rocío Fernández, M.A. García, I. Penuelas, Wear prevention behaviour of nanoparticle suspension under extreme pressure conditions. Wear 263(7–12), 1568–1574 (2007)

    Google Scholar 

  26. S. Bhaumik, S. Prabhu, N. Uppala, Extreme pressure property of carbon nano tubes (CNT) based nanolubricant. J. Chem. Eng. Mater. Sci. 4(8), 123–127 (2013)

    Google Scholar 

  27. D.L. Cursaru, C. Andronescu, C. Pirvu, R. Ripeanu, The efficiency of Co-based single-wall carbon nanotubes (SWNTs) as an AW/EP additive for mineral base oils. Wear 290, 133–139 (2012)

    Google Scholar 

  28. E.F. Rico, I. Minondo, D.G. Cuervo, The effectiveness of PTFE nanoparticle powder as an EP additive to mineral base oils. Wear 262(11–12), 1399–1406 (2007)

    Google Scholar 

  29. M.K. Dubey, J. Bijwe, S.S.V. Ramakumar, PTFE based nano-lubricants. Wear 306(1–2), 80–88 (2013)

    Google Scholar 

  30. M.K. Dubey, J. Bijwe, S.S.V. Ramakumar, Nano-PTFE: new entrant as a very promising EP additive. Tribol. Int. 87, 121–131 (2015)

    Google Scholar 

  31. S. Ma, S. Zheng, D. Cao, H. Guo, Anti-wear and friction performance of ZrO2 nanoparticles as lubricant additive. Particuology 8(5), 468–472 (2010)

    Google Scholar 

  32. A. Verma, W. Jiang, H.H. Abu Safe, W.D. Brown, A.P. Malshe, Tribological behavior of deagglomerated active inorganic nanoparticles for advanced lubrication. Tribol. Trans. 51(5), 673–678 (2008)

    Google Scholar 

  33. L. Yadgarov, V. Petrone, R. Rosentsveig, Y. Feldman, R. Tenne, A. Senatore, Tribological studies of rhenium doped fullerene-like MoS2 nanoparticles in boundary, mixed and elasto-hydrodynamic lubrication conditions. Wear 297(1–2), 1103–1110 (2013)

    Google Scholar 

  34. A. Greco, K. Mistry, V. Sista, O. Eryilmaz, A. Erdemir, Friction and wear behaviour of boron based surface treatment and nano-particle lubricant additives for wind turbine gearbox applications. Wear 271(9–10), 1754–1760 (2011)

    Google Scholar 

  35. L.H. Li, A.M. Glushenkov, S.K. Hait, P. Hodgson, Y. Chen, High-efficient production of boron nitride nano sheets via an optimized ball milling process for lubrication in oil. Sci. Rep. 4, 7288 (2014)

    Google Scholar 

  36. H. Ghaednia, R.L. Jackson, J.M. Khodadadi, Experimental analysis of stable CuO nanoparticle enhanced lubricants. J. Exp. Nanosci. Taylor & Francis 10(1), 1–18 (2015)

    Google Scholar 

  37. T. Luo, X. Wei, H. Zhao, G. Cai, X. Zheng, Tribology properties of Al2O3/TiO2 nanocomposites as lubricant additives. Ceram. Int. 40(7), 10103–10109 (2014)

    Google Scholar 

  38. D. Jiao, S. Zheng, Y. Wang, R. Guan, B. Cao, The tribology properties of alumina/silica composite nanoparticles as lubricant additives. Appl. Surf. Sci. 257(13), 5720–5725 (2011)

    Google Scholar 

  39. D.X. Peng, C.H. Chen, Y. Kang, Y.P. Chang, S.Y. Chang, Size effects of SiO2 nanoparticles as oil additives on tribology of lubricant. Ind. Lubr. Tribol. 62(2), 111–120 (2010)

    Google Scholar 

  40. Y. Hwang, C. Lee, Y. Choi, S. Cheong, D. Kim, K. Lee, S.H. Kim, Effect of the size and morphology of particles dispersed in nano-oil on friction performance between rotating discs. J. Mech. Sci. Technol. 25(11), 2853–2857 (2011)

    Google Scholar 

  41. J.V. Kalyani, R.B. Rastogi, D. Kumar, The investigation of different particle size magnesium-doped zinc oxide (Zn 0.92 Mg 0.08 O) nanoparticles on the lubrication behavior of paraffin oil. Appl. Nanosci. 7, 275–281 (2017)

    Google Scholar 

  42. X. Liu, N. Xu, W. Li, M. Zhang, L. Chen, W. Lou, X. Wang, Exploring the effect of nanoparticle size on the tribological properties of SiO2/polyalkylene glycol nanofluid under different lubrication conditions. Tribol. Int. 109, 467–472 (2017)

    Google Scholar 

  43. M.K. Gupta, J. Bijwe, M. Padhan, Role of size of hexagonal boron nitride particles on tribo-performance of nano and micro oils. Lubr. Sci. (2018). https://doi.org/10.1002/ls.1431

    Article  Google Scholar 

  44. M.K. Gupta, J. Bijwe, Exploration of potential of graphite particles with varying sizes as EPA and AWA in oils. Tribol. Int. (2018). https://doi.org/10.1016/j.triboint.2018.06.009

    Article  Google Scholar 

  45. M.O. Tas, A. Banerji, M. Lou, M.J. Lukitsch, A.T. Alpas, Roles of mirror-like surface finish and DLC coated piston rings on increasing scuffing resistance of cast iron cylinder liners. Wear 376, 1558–1569 (2017)

    Google Scholar 

  46. E. Tomanik, M. El Mansori, R. Souza, F. Profito, Effect of waviness and roughness on cylinder liner friction. Tribol. Int. 120, 547–555 (2018)

    Google Scholar 

  47. A. Raina, A. Anand, Effect of nanodiamond on friction and wear behavior of metal dichalcogenides in synthetic oil. Appl. Nanosci. 8(4), 581–591 (2018)

    Google Scholar 

  48. A. Raina, A. Anand, Influence of surface roughness and nanoparticles concentration on the friction and wear characteristics of PAO base oil. Mater. Res. Express 5(9), 095018 (2018)

    Google Scholar 

  49. J.L. Viesca, A.H. Battez, R. González, R. Chou, J.J. Cabello, Antiwear properties of carbon-coated copper nanoparticles used as an additive to a polyalphaolefin. Tribol. Int. 44(7–8), 829–833 (2011)

    Google Scholar 

  50. S. Tarasov, A. Kolubaev, S. Belyaev, M. Lerner, F. Tepper, Study of friction reduction by nanocopper additives to motor oil. Wear 252(1–2), 63–69 (2002)

    Google Scholar 

  51. G.B. Yang, S.T. Chai, X.J. Xiong, S.M. Zhang, L.G. Yu, P.Y. Zhang, Preparation and tribological properties of surface modified Cu nanoparticles. Trans. Nonferrous Met. Soc. China 22(2), 366–372 (2012)

    Google Scholar 

  52. H.L. Yu, Y. Xu, P.J. Shi, B.S. Xu, X.L. Wang, Q. Liu, H.M. Wang, Characterization and nano-mechanical properties of tribofilms using Cu nanoparticles as additives. Surf. Coat. Technol. 203(1–2), 28–34 (2008)

    Google Scholar 

  53. Z. Yidong, Focus on self-repairing performance and mechanism of Cu-DDP additive in base lubricating oil. Ind. Lubr. Tribol. 64(1), 11–15 (2012)

    Google Scholar 

  54. R. Chou, A.H. Battez, J.J. Cabello, J.L. Viesca, A. Osorio, A. Sagastume, Tribological behavior of polyalphaolefin with the addition of nickel nanoparticles. Tribol. Int. 43(12), 2327–2332 (2010)

    Google Scholar 

  55. S.J. Asadauskas, R. Kreivaitis, G. Bikulčius, A. Grigucevičienė, J. Padgurskas, Tribological effects of Cu, Fe and Zn nano-particles, suspended in mineral and bio-based oils. Lubr. Sci. 28(3), 157–176 (2016)

    Google Scholar 

  56. H. Chang, C.H. Chen, H.S. Tu, The fabrication and effect of Bi and Bi/Cu nanoparticles on the tribological properties of SAE-30 lubricating oil. J. Comput. Theor. Nanosci. 12(5), 852–857 (2015)

    Google Scholar 

  57. C. Kumara, H. Luo, D.N. Leonard, H.M. Meyer, J. Qu, Organic-modified silver nanoparticles as lubricant additives. ACS Appl. Mater. Interfaces. 9(42), 37227–37237 (2017)

    Google Scholar 

  58. S. Ingole, A. Charanpahari, A. Kakade, S.S. Umare, D.V. Bhatt, J. Menghani, Tribological behavior of nano TiO2 as an additive in base oil. Wear 301(1–2), 776–785 (2013)

    Google Scholar 

  59. M. Laad, V.K.S. Jatti, Titanium oxide nanoparticles as additives in engine oil. J. King Saud Univ. Eng. Sci. 30(2), 116–122 (2016)

    Google Scholar 

  60. M.K.A. Ali, H. Xianjun, L. Mai, C. Qingping, R.F. Turkson, C. Bicheng, Improving the tribological characteristics of piston ring assembly in automotive engines using Al2O3 and TiO2 nanomaterials as nano-lubricant additives. Tribol. Int. 103, 540–554 (2016)

    Google Scholar 

  61. A.A. Thakre, A. Shinde, G. Mundhe, Improvement in boundary lubrication characteristics of SAE 20W40 oil using aluminum oxide nanoparticles. J. Tribol. 138(3), 034501 (2016)

    Google Scholar 

  62. L. Pena-Paras, J. Taha-Tijerina, L. Garza, D. Maldonado-Cortés, R. Michalczewski, C. Lapray, Effect of CuO and Al2O3 nanoparticle additives on the tribological behavior of fully formulated oils. Wear 332, 1256–1261 (2015)

    Google Scholar 

  63. S.M. Alves, V.S. Mello, E.A. Faria, A.P.P. Camargo, Nanolubricants developed from tiny CuO nanoparticles. Tribol. Int. 100, 263–271 (2016)

    Google Scholar 

  64. M.V. Thottackkad, P.K. Rajendrakumar, K.P. Nair, Experimental studies on the tribological behaviour of engine oil (SAE 15W40) with the addition of CuO nanoparticles. Ind. Lubr. Tribol. 66(2), 289–297 (2014)

    Google Scholar 

  65. V.S. Jatti, T.P. Singh, Copper oxide nano-particles as friction-reduction and anti-wear additives in lubricating oil. J. Mech. Sci. Technol. 29(2), 793–798 (2015)

    Google Scholar 

  66. X. Ran, X. Yu, Q. Zou, Effect of particle concentration on tribological properties of ZnO nanofluids. Tribol. Trans. 60(1), 154–158 (2017)

    Google Scholar 

  67. H. Xie, B. Jiang, J. He, X. Xia, F. Pan, Lubrication performance of MoS2 and SiO2 nanoparticles as lubricant additives in magnesium alloy-steel contacts. Tribol. Int. 93, 63–70 (2016)

    Google Scholar 

  68. H. Xie, B. Jiang, B. Liu, Q. Wang, J. Xu, F. Pan, An investigation on the tribological performances of the SiO2/MoS2 hybrid nanofluids for magnesium alloy-steel contacts. Nanoscale Res. Lett. 11(1), 329 (2016)

    Google Scholar 

  69. C. Tao, B. Wang, G.C. Barber, J.D. Schall, H. Lan, Tribological behaviour of SnO2 nanoparticles as an oil additive on brass. Lubr. Sci. (2018). https://doi.org/10.1002/ls.1416

    Article  Google Scholar 

  70. H. Wu, L. Wang, B. Johnson, S. Yang, J. Zhang, G. Dong, Investigation on the lubrication advantages of MoS2 nanosheets compared with ZDDP using block-on-ring tests. Wear 394, 40–49 (2018)

    Google Scholar 

  71. Q. Wan, Y. Jin, P. Sun, Y. Ding, Rheological and tribological behaviour of lubricating oils containing platelet MoS2 nanoparticles. J. Nanopart. Res. 16(5), 2386 (2014)

    Google Scholar 

  72. M.S. Charoo, M.F. Wani, Tribological properties of IF-MoS2 nanoparticles as lubricant additive on cylinder liner and piston ring tribo-pair. Tribol. Ind. 38(2), 156–162 (2016)

    Google Scholar 

  73. F. Abate, V. D’Agostino, R. Di Giuda, A. Senatore, Tribological behaviour of MoS2 and inorganic fullerene-like WS2 nanoparticles under boundary and mixed lubrication regimes. Tribol. Mater. Surf. Interfaces 4(2), 91–98 (2010)

    Google Scholar 

  74. W. Liu, S. Chen, An investigation of the tribological behaviour of surface-modified ZnS nanoparticles in liquid paraffin. Wear 238(2), 120–124 (2000)

    Google Scholar 

  75. L.L. Zhang, J.P. Tu, H.M. Wu, Y.Z. Yang, WS2 nanorods prepared by self-transformation process and their tribological properties as additive in base oil. Mater. Sci. Eng. A 454, 487–491 (2007)

    Google Scholar 

  76. Chen, C. B., Mao, D. H., Shi, C., & Liu, Y. (2011). Experimental study on the tribological characteristics of nanometer WS2 lubricating oil additive based on engine oil. In Advanced Materials Research (Vol. 328, pp. 203–208). Trans Tech Publications.

  77. X. Zhang, H. Xu, J. Wang, X. Ye, W. Lei, M. Xue, C. Li, Synthesis of ultrathin WS2 nanosheets and their tribological properties as lubricant additives. Nanoscale Res. Lett. 11(1), 442 (2016)

    Google Scholar 

  78. W. Zhang, M. Zhou, H. Zhu, Y. Tian, K. Wang, J. Wei, D. Wu, Tribological properties of oleic acid-modified graphene as lubricant oil additives. J. Phys. D Appl. Phys. 44(20), 205303 (2011)

    Google Scholar 

  79. H.P. Mungse, N. Kumar, O.P. Khatri, Synthesis, dispersion and lubrication potential of basal plane functionalized alkylated graphene nanosheets. RSC Adv. 5(32), 25565–25571 (2015)

    Google Scholar 

  80. V. Eswaraiah, V. Sankaranarayanan, S. Ramaprabhu, Graphene-based engine oil nanofluids for tribological applications. ACS Appl. Mater. Interfaces. 3(11), 4221–4227 (2011)

    Google Scholar 

  81. V. Zin, S. Barison, F. Agresti, L. Colla, C. Pagura, M. Fabrizio, Improved tribological and thermal properties of lubricants by graphene based nano-additives. RSC Adv. 6(64), 59477–59486 (2016)

    Google Scholar 

  82. Z. Chen, Y. Liu, J. Luo, Tribological properties of few-layer graphene oxide sheets as oil-based lubricant additives. Chinese J. Mech. Eng. 29(2), 439–444 (2016)

    Google Scholar 

  83. B. Gupta, N. Kumar, K. Panda, V. Kanan, S. Joshi, I. Visoly-Fisher, Role of oxygen functional groups in reduced graphene oxide for lubrication. Sci. Rep. 7, 45030 (2017)

    Google Scholar 

  84. H.P. Mungse, O.P. Khatri, Chemically functionalized reduced graphene oxide as a novel material for reduction of friction and wear. J. Phys. Chem. C 118(26), 14394–14402 (2014)

    Google Scholar 

  85. W. Khalil, A. Mohamed, M. Bayoumi, T.A. Osman, Tribological properties of dispersed carbon nanotubes in lubricant. Fuller. Nanotub. Carbon Nanostruct. 24(7), 479–485 (2016)

    Google Scholar 

  86. Y. Xu, J. Geng, Y. Peng, Z. Liu, J. Yu, X. Hu, Lubricating mechanism of Fe3O4@ MoS2 core-shell nanocomposites as oil additives for steel/steel contact. Tribol. Int. 121, 241–251 (2018)

    Google Scholar 

  87. Q. Chen, S. Zheng, S. Yang, W. Li, X. Song, B. Cao, Enhanced tribology properties of ZnO/Al2O3 composite nanoparticles as liquid lubricating additives. J. Sol-Gel. Sci. Technol. 61(3), 501–508 (2012)

    Google Scholar 

  88. W. Li, S. Zheng, B. Cao, S. Ma, Friction and wear properties of ZrO2/SiO2 composite nanoparticles. J. Nanopart. Res. 13(5), 2129–2137 (2011)

    Google Scholar 

  89. D. Zheng, Y.P. Wu, Z.Y. Li, Z.B. Cai, Tribological properties of WS2/graphene nanocomposites as lubricating oil additives. RSC Adv. 7(23), 14060–14068 (2017)

    Google Scholar 

  90. L. Hao, J. Li, X. Xu, T. Ren, Preparation and tribological properties of a kind of lubricant containing calcium borate nanoparticles as additives. Ind. Lubr. Tribol. 64(1), 16–22 (2012)

    Google Scholar 

  91. R. Liu, X. Wei, D. Tao, Y. Zhao, Study of preparation and tribological properties of rare earth nanoparticles in lubricating oil. Tribol. Int. 43(5–6), 1082–1086 (2010)

    Google Scholar 

  92. H.L. Yu, Y. Xu, P.J. Shi, H.M. Wang, Y. Zhao, B.S. Xu, Z.M. Bai, Tribological behaviors of surface-coated serpentine ultrafine powders as lubricant additive. Tribol. Int. 43(3), 667–675 (2010)

    Google Scholar 

  93. F. Nan, Y. Xu, B. Xu, F. Gao, Y. Wu, Z. Li, Tribological behaviours and wear mechanisms of ultrafine magnesium aluminum silicate powders as lubricant additive. Tribol. Int. 81, 199–208 (2015)

    Google Scholar 

  94. G. Yang, J. Zhang, S. Zhang, L. Yu, P. Zhang, B. Zhu, Preparation of triazine derivatives and evaluation of their tribological properties as lubricant additives in poly-alpha olefin. Tribol. Int. 62, 163–170 (2013)

    Google Scholar 

  95. J. Li, B. Fan, T. Ren, Y. Zhao, Tribological study and mechanism of B-N and B–S–N triazine borate esters as lubricant additives in mineral oil. Tribol. Int. 88, 1–7 (2015)

    Google Scholar 

  96. J. Zhou, Z. Wu, Z. Zhang, W. Liu, H. Dang, Study on an antiwear and extreme pressure additive of surface coated LaF3 nanoparticles in liquid paraffin. Wear 249(5–6), 333–337 (2001)

    Google Scholar 

  97. M. Qu, Y. Yao, J. He, X. Ma, J. Feng, S. Liu, X. Liu, Tribological study of polytetrafluoroethylene lubricant additives filled with Cu microparticles or SiO2 nanoparticles. Tribol. Int. 110, 57–65 (2017)

    Google Scholar 

  98. A.A. Thakre, A. Thakur, Study of behaviour of aluminium oxide nanoparticles suspended in SAE 20W40 oil under extreme pressure lubrication. Ind. Lubr. Tribol. 67(4), 328–335 (2015)

    Google Scholar 

  99. C.J. Reeves, P.L. Menezes, M.R. Lovell, T.C. Jen, The influence of surface roughness and particulate size on the tribological performance of bio-based multi-functional hybrid lubricants. Tribol. Int. 88, 40–55 (2015)

    Google Scholar 

  100. L. Joly-Pottuz, N. Matsumoto, H. Kinoshita, B. Vacher, M. Belin, G. Montagnac, N. Ohmae, Diamond-derived carbon onions as lubricant additives. Tribol. Int. 41(2), 69–78 (2008)

    Google Scholar 

  101. J. Mao, J. Zhao, W. Wang, Y. He, J. Luo, Influence of the micromorphology of reduced graphene oxide sheets on lubrication properties as a lubrication additive. Tribol. Int. 119, 614–621 (2018)

    Google Scholar 

  102. J. Lin, L. Wang, G. Chen, Modification of graphene platelets and their tribological properties as a lubricant additive. Tribol Lett 41(1), 209–215 (2011)

    Google Scholar 

  103. A. Raina, A. Anand, Tribological investigation of diamond nanoparticles for steel/steel contacts in boundary lubrication regime. Appl. Nanosci. 7(7), 371–388 (2017)

    Google Scholar 

  104. A. Raina, A. Anand, Lubrication performance of synthetic oil mixed with diamond nanoparticles: effect of concentration. Mater. Today: Proc. 5(9), 20588–20594 (2018)

    Google Scholar 

  105. O. Gulzar, A. Qayoum, R. Gupta, Experimental study on stability and rheological behaviour of hybrid Al2O3-TiO2 therminol-55 nanofluids for concentrating solar collectors. Powder Technol. 352, 436–444 (2019)

    Google Scholar 

  106. P.U. Aldana, B. Vacher, T. Le Mogne, M. Belin, B. Thiebaut, F. Dassenoy, Action mechanism of WS2 nanoparticles with ZDDP additive in boundary lubrication regime. Tribol. Lett. 56(2), 249–258 (2014)

    Google Scholar 

  107. Y. Xu, Y. Peng, K.D. Dearn, X. Zheng, L. Yao, X. Hu, Synergistic lubricating behaviors of graphene and MoS2 dispersed in esterified bio-oil for steel/steel contact. Wear 342, 297–309 (2015)

    Google Scholar 

  108. Z.Y. Xu, Y. Xu, K.H. Hu, Y.F. Xu, X.G. Hu, Formation and tribological properties of hollow sphere-like nano-MoS2 precipitated in TiO2 particles. Tribol. Int. 81, 139–148 (2015)

    Google Scholar 

  109. H. Xie, B. Jiang, X. Hu, C. Peng, H. Guo, F. Pan, Synergistic effect of MoS2 and SiO2 nanoparticles as lubricant additives for magnesium alloy–steel contacts. Nanomaterials 7(7), 154 (2017)

    Google Scholar 

  110. P. Gangwani, M.K. Gupta, J. Bijwe, Synergism between particles of PTFE and h-BN to enhance the performance of oils. Wear 384, 169–177 (2017)

    Google Scholar 

  111. M.G. Ivanov, S.V. Pavlyshko, D.M. Ivanov, I. Petrov, O. Shenderova, Synergistic compositions of colloidal nanodiamond as lubricant-additive. J. Vac. Sci. Technol. B Nanotechnol. Microelectron. Mater. Process. Meas. Phenom. 28(4), 869–877 (2010)

    Google Scholar 

  112. O. Shenderova, A. Vargas, S. Turner, D.M. Ivanov, M.G. Ivanov, Nanodiamond-based nanolubricants: investigation of friction surfaces. Tribol. Trans. 57(6), 1051–1057 (2014)

    Google Scholar 

  113. I. Minami, Molecular science of lubricant additives. Appl. Sci. 7(5), 445 (2017)

    Google Scholar 

Download references

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mir Irfan Ul Haq.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raina, A., Irfan Ul Haq, M., Anand, A. et al. Lubrication Characteristics of Oils Containing Nanoadditives: Influencing Parameters, Market Scenario and Advancements. J. Inst. Eng. India Ser. D 102, 575–587 (2021). https://doi.org/10.1007/s40033-021-00272-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40033-021-00272-3

Keywords

Navigation