Skip to main content
Log in

Detection of Salmonella typhi utilizing bioconjugated fluorescent polymeric nanoparticles

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Present work demonstrates effective utilization of functionalized polymeric fluorescent nanoparticles as biosensing probe for the detection of Salmonella typhi bacteria on modified polycarbonate (PC) filters in about 3 h. Antibody modified-PC membranes were incubated with contaminated bacterial water for selective capturing which were detected by synthesized novel bioconjugate probe. Core–shell architecture of polymeric nanoparticles endows them with aqueous stabilization and keto-enolic functionalities making them usable for covalently linking S. typhi antibodies without any crosslinker or activator. Bradford analysis revealed that one nanoparticle has an average of 3.51 × 10−19 g or 21 × 104 bound S. typhi Ab molecules. Analysis of the regions of interest (ROI) in fluorescent micrographs of modified fluoroimmunoassay showed higher detection sensitivity of 5 × 102 cells/mL due to signal amplification unlike conventional naked dye FITC-Ab conjugate. Fluorescence of pyrene dye remained same on immobilization of biomolecules and nanoparticles showed stable fluorescent intensity under prolong exposure to laser owing to protective polymeric layer allowing accurate identification of bacteria. Surface-functionalized PC matrix and fluorescent label NPs permit covalent interactions among biomolecules enhancing signal acquisitions showing higher detection efficiency as compared to conventional microtiter plate-based system. Our novel immunoassay has the potential to be explored as rapid detection method for identifying S. typhi contaminations in water.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

FPNP:

Fluorescent polymeric nanoparticles

NPs:

Nanoparticles

AAEM:

Acetoacetoxy ethyl methacrylate

S. typhi :

Salmonella typhi

Ab:

Antibody

Fl:

Fluorescent

References

  • Abdel-Hamid I, Ghindilis AL, Atanasov P, Wilkins E (1998) Development of a flow-through immunoassay system. Sens Actuat B 49:202–210

    Article  Google Scholar 

  • Allmer K, Huly A, Runby B (1989) Surface modification of polymers. III. Grafting of stabilizers onto polymer films. J Polym Sci Part A 27:3405–3417

    Article  Google Scholar 

  • Bagwe RP, Hilliard LR, Tan W (2006) Surface modification of silica nanoparticles to reduce aggregation and non-specific binding. Langmuir 25:4357–4362

    Article  Google Scholar 

  • Chen CS, Durst RA (2006) Simultaneous detection of Escherichia Coli and O157:H7, Salmonella spp. and Listeria monocytogenes with an array-based immunosorbent assay using universal protein G liposomal nanovesicles. Talanta 69:232–238

    Article  Google Scholar 

  • Chen L, Zhang J (2012) Bioconjugated magnetic nanoparticles for rapid capture of gram-positive Bacteria. J Biosens Bioelectrons 11:005

    Google Scholar 

  • Cheng CM, Martinez A, Gong J, Mace CR, Phillips ST, Carrilho E, Mirica K, Whitesides G (2010) Paper-based ELISA. Angew Chem Int Ed 49:4771–4774

    Article  Google Scholar 

  • Chumyim P, Rijiravanich P, Somasundrum M, Surareungchai W (2014) Detection of Salmonella enterica serovar Typhimurium in milk sample using electrochemical immunoassay and enzyme amplified labeling. Int Conf Agric Environ Biol Sci 24–25 Phuke

  • Gruber HJ, Hahn CD, Kada G, Riener CK, Harms GS, Ahrer W, Dax TG, Knaus HG (2000) Anomalous fluorescence enhancement of Cy3 and Cy3.5 versus anomalous fluorescence loss of Cy5 and Cy7 upon covalent linking to IgG and noncovalent binding to avidin. Bioconjugate Chem 11:696–704

    Article  Google Scholar 

  • Harma H, Pelkkikangas A, Soukka T, Huhtinen P, Huopalahti S, Lovgern T (2003) Sensitive miniature single-particle immunoassay of prostate-specific antigen using time-resolved fluorescence. Anal Chim Acta 482:157–164

    Article  Google Scholar 

  • Holzapfel V, Musyanovych A, Landfaster K, Lorenz MR, Mailander V (2005) Preparation of fluorescent carboxyl and amino functionalized polystyrene particles by miniemulsion polymerization as markers for cells. Macromol Chem Phys 206:2440–2449

    Article  Google Scholar 

  • Hun X, Zhang Z (2007a) A novel sensitive staphylococcal enterotoxin C1 fluoroimmunoassay based on functionalized fluorescent core-shell nanoparticle labels. Food Chem 105:1623–1629

    Article  Google Scholar 

  • Hun X, Zhang Z (2007b) Fluoroimmunoassay for tumor necrosis factor- α in human serum using Ru(bpy)3Cl2-doped fluorescent silica nanoparticles as labels. Talanta 73:366–371

    Article  Google Scholar 

  • Hun X, Zhang Z, Tiao L (2008) Anti-Her-2 monoclonal antibody conjugated polymer fluorescent nanoparticles probe for ovarian cancer imaging. Anal Chim Acta 625:201–206

    Article  Google Scholar 

  • Ivnitski D, Abdel-Hamid I, Atanasov P, Wilkins E (1999) Biosensors for detection of pathogenic bacteria. Biosens Bioelectron 14:599–624

    Article  Google Scholar 

  • Jain S, Chattopadhyay S, Jackeray R, Abid Z, Singh H (2013) Novel functionalized fluorescent polymeric nanoparticles: synthesis, characterization and immobilization of biomolecules. Nanoscale 5:6883–6892

    Article  Google Scholar 

  • Kumar S, Balakrishna K, Batra HV (2008) Enrichment-ELISA for detection of Salmonella typhi from food and water samples. Biomed Environ Sci 21(2):137–143

    Article  Google Scholar 

  • Kumari A, Yadav SK, Yadav SC (2010) Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B 75:1–18

    Article  Google Scholar 

  • Liandris E, Gazouli M, Andreadou M, Sechi LA, Rosu V, Ikonomopoulos J (2011) Detection of pathogenic mycobacteria based on functionalized quantum dots coupled with immunomagnetic separation. PLoS One 6:e20026–e20032

    Article  Google Scholar 

  • Nichkova M, Dosev D, Gee SJ, Hammock BD, Kennedy IM (2005) Microarray immunoassay for phenoxybenzoic acid using polymer encapsulated Eu:Gd2O3 nanoparticles as fluorescent labels. Anal Chem 77:6864–6873

    Article  Google Scholar 

  • Park J, Kurosawa S, Watanabe J, Ishihara K (2004) Evaluation of 2-methacryloyloxyethyl phosphorylcholine polymeric nanoparticle for immunoassay of C-reactive protein detection. Anal Chem 76(9):2649–2655

    Article  Google Scholar 

  • Pich A, Bhattacharya S, Hans-Juergen Adler P, Wage T, Taubenberger A, Li Z, Pee K, Bo¨hmer U, Bley T (2006) Composite magnetic particles as carriers for laccase from Trametes versicolor. Macromol Biosci 6:301–310

    Article  Google Scholar 

  • Qui D, He X, Wang K, Zhao X, Tan W, Chen J (2007) Fluorescent nanoparticle-based indirect immunofluorescence microscopy for detection of Mycobacterium tuberculosis. J Biomed Biotechnol 7:89364–89370

    Google Scholar 

  • Santra S, Dutta D, Moudgil BM (2005a) Functional dye-doped silica nanoparticles for bioimaging, diagnostics and therapeutics. Food Bioprod Process 83:136–140

    Article  Google Scholar 

  • Santra S, Dutta D, Walter G, Moudgil B (2005b) Fluorescent nanoparticle probes for cancer imaging. Technol Cancer Res Treat 4:593–602

    Article  Google Scholar 

  • Soukka T, Halrmal H, Paukkunen J, Lolvgren T (2001) Utilization of kinetically enhanced monovalent binding affinity by immunoassays based on multivalent nanoparticle-antibody bioconjugates. Anal Chem 73:2254–2260

    Article  Google Scholar 

  • Vakurov A, Pchelintsev NA, Forde J, Fagain CO, Gibson T, Millner P (2009) The preparation of size-controlled functionalized polymeric nanoparticles in micelles. Nanotechnology 20:295605–295612

    Article  Google Scholar 

  • Wang J, Mazza G (2002) Effects of anthocyanins and other phenolic compounds on the production of tumor necrosis factor α in LPS/IFN-γ-activated raw 264.7 macrophages. J Agric Food Chem 50:4183–4191

    Article  Google Scholar 

  • Wang L, Zhao W, Tan W (2008a) Bioconjugated silica nanoparticles: development and applications. Nano Res 1:99–115

    Article  Google Scholar 

  • Wang X, Wu J, Li F, Li H (2008b) Synthesis of water-soluble CdSe quantum dots by ligand exchange with p-sulfonatocalix(n)arene (n = 4, 6) as fluorescent probes for amino acids. Nanotechnology 19:205501–205509

    Article  Google Scholar 

  • Yang L, Li Y (2006) Simultaneous detection of Escherichia coli O157:H7 and Salmonella Typhimurium using quantum dots as fluorescence labels. Analyst 131:394–401

    Article  Google Scholar 

  • Yang W, Zhang CG, Qu HY, Wang HH, Xu JG (2004) Novel fluorescent silica nanoparticle probe for ultrasensitive immunoassays. Anal Chim Acta 503:163–169

    Article  Google Scholar 

  • Yaohua H, Chengcheng W, Bing B, Mintong L, Wang R, Li Y (2014) Detection of Staphylococcus aureus using quantum dots as fluorescence labels. Int J Agric Biol Eng 7:77–81

    Google Scholar 

  • Yu H, Bruno JG (1996) Immunomagnetic-electrochemiluminescent detection of Escherichia coli O157 and Salmonella typhimurium in foods and environmental water samples. Appl Environ Microbiol 62:587–592

    Google Scholar 

  • Zhao X, Hillard LR, Mechery S, Wang Y, Bagwe RP, Jin S (2004) A rapid bioassay for single bacterial cell quantitation using bioconjugated nanoparticles. PNAS 101:15027–15032

    Article  Google Scholar 

  • Zhou L, Pollard AJ (2010) A fast and highly sensitive blood culture pcr method for clinical detection of Salmonella enterica serovar typhi. Clin Microbiol Antimicrob 9:14–18

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Department of Biotechnology (DBT), Govt. of India; authors duly acknowledge their generous financial support. The authors are also thankful to CSIR-UGC and ICMR, India for their research fellowships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swati Jain.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIFF 44 kb)

Fig. S1−ATR-FTIR spectra of FPNP-S. typhi Ab conjugate.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jain, S., Chattopadhyay, S., Jackeray, R. et al. Detection of Salmonella typhi utilizing bioconjugated fluorescent polymeric nanoparticles. J Nanopart Res 18, 111 (2016). https://doi.org/10.1007/s11051-016-3414-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-016-3414-1

Keywords

Navigation