Skip to main content
Log in

Morphology evolution of gold nanoparticles as function of time, temperature, and Au(III)/sodium ascorbate molar ratio

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

In this work the morphology evolution of Au nanoparticles (AuNPs), obtained by direct reduction, was studied as a function of time, temperature, and Au(III)/sodium ascorbate molar ratio. The NPs morphology was examined by transmission electron microscope with image analysis, while time evolution was investigated by visible and near-infrared absorption spectroscopy and dynamic light scattering. It is found that initially formed star-like NPs transform in more spheroidal particles and the evolution appears more rapid by increasing the temperature while a large amount of reducing agent prevents the remodeling of AuNPs. An explication of morphology evolution is proposed.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Alivisatos AP (1996) Semiconductor clusters nanocrystals and quantum dots. Science 271:933–937

    Article  Google Scholar 

  • Astruc D (2008) Nanoparticles and catalysis. Wiley-VCH, Germany

    Google Scholar 

  • Bedeaux D, Vlieger J (1974) A statistical theory of the dielectric properties of thin island films. I-The surface material coefficients. Physica 73:287–311

    Article  Google Scholar 

  • Bedeaux D, Vlieger J (1983) A statistical theory for the dielectric properties of thin island films - Application and comparison with experimental results. Thin Solid Films 102:265–281

    Article  Google Scholar 

  • Bohren CF, Huffman DR (1983) Absorption and scattering of light by small particles. Wiley-VCH, Weinheim

    Google Scholar 

  • Casu A, Cabrini E, Donà A, Falqui A, Diaz-Fernandez Y, Milanese C, Taglietti A, Pallavicini P (2012) Controlled synthesis of gold nanostars by using a zwitterionic surfactant. Chem Eur J 18:9381–9390

    Article  Google Scholar 

  • Chen S, Wang ZL, Ballato J, Foulger SH, Carroll DL (2003) Monopod, bipod, tripod and tetrapod gold nanocrystals. J Am Chem Soc 125:16186–16187

    Article  Google Scholar 

  • Clippe P, Evrard R, Lucas AA (1976) Aggregation effect on the infrared absorption spectrum of small ionic crystals. Phys Rev B 14:1715–1721

    Article  Google Scholar 

  • Compton OC, Osterloh FE (2007) Evolution of size and shape in the colloidal crystallization of gold nanoparticles. J Am Chem Soc 129:7793–7798

    Article  Google Scholar 

  • Daniel MC, Astruc D (2004) Gold nanoparticles: assembly supramolecular chemistry quantum-size-related properties and applications toward biology catalysis and nanotechnology. Chem Rev 104:293–346

    Article  Google Scholar 

  • Dıez Orrite S, Stoll S, Schurtenberger P (2005) Off-lattice Monte Carlo simulations of irreversible and reversible aggregation processes. Soft Matter 1:364–371

    Article  Google Scholar 

  • Dumur F, Guerlin A, Dumas E, Bertin D, Gigmes D, Mayer CR (2011) Controlled spontaneous generation of gold nanoparticles assisted by dual reducing and capping agents. Gold Bull 44:119–137

    Article  Google Scholar 

  • Garnett JCM (1904) Colours in metal glasses and in metallic films. Philos Trans R Soc 203:385–420

    Article  Google Scholar 

  • Ghosh SK, Pal T (2007) Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications. Chem Rev 107:4797–4862

    Article  Google Scholar 

  • Gorshkov V, Zavalov A, Privman V (2009) Shape selection in diffusive growth of colloids and nanoparticles. Langmuir 25:7940–7953

    Article  Google Scholar 

  • Goia DV, Matijević E (1999) Tailoring the particle size of monodispersed colloidal gold. Colloid Surf A 146:139–152

    Article  Google Scholar 

  • Guerrero-Martínez A, Barbosa S, Pastoriza-Santos I, Liz-Marzán LM (2011) Nanostars shine bright for you: colloidal synthesis properties and applications of branched metallic nanoparticles. Curr Opin Colloid Interface Sci 16:118–127

    Article  Google Scholar 

  • Haiss W, Thanh NTK, Aveyard J, Ferning DG (2007) Determination of size and concentration of gold nanoparticles from UV–Vis spectra. Anal Chem 79:4215–4221

    Article  Google Scholar 

  • Hayat MA (1991) Colloidal gold: principles, methods and applications. Academic Press, San Diego

    Google Scholar 

  • Henry AI, Bingham JM, Ringe E, Marks LD, Schatz GC, Van Duyne RP (2011) Correlated structure and optical property studies of plasmonic nanoparticles. J Phys Chem C 115:9291–9305

    Article  Google Scholar 

  • Hofmeister H (2009) Shape variations and anisotropic growth of multiply twinned nanoparticles. Z Kristallogr 224:528–538

    Google Scholar 

  • Hornyak G, Moore JJ, Tibbals HF, Dutta J (2009) Fundamentals of nanotechnology. CRC Press, Florida

    Google Scholar 

  • Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size shape and dielectric environment. J Phys Chem B 107:668–677

    Article  Google Scholar 

  • Kimling J, Maier M, Okenve B, Kotaidis V, Ballot H, Plech A (2006) Turkevich method for gold nanoparticle synthesis revisited. J Phys Chem B 110:15700–15707

    Article  Google Scholar 

  • Kreibig U, Vollmer M (1995) Optical properties of metal cluster. Springer, Heidelberg

    Book  Google Scholar 

  • Kumar PS, Pastoriza-Santos I, Rodrıguez-Gonzalez B, Garcıa de Abajo FJ, Liz-Marzan LM (2008) High-yield synthesis and optical response of gold nanostars. Nanotechnology 19:015606–015612

    Article  Google Scholar 

  • LaMer VK, Dinegar RH (1950) Theory production and mechanism of formation of monodispersed hydrosols. J Am Chem Soc 72:4847–4854

    Article  Google Scholar 

  • Link S, El-Sayed MA (1999) Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. J Phys Chem B 103:4212–4217

    Article  Google Scholar 

  • Louis C, Pluchery O (2012) Gold nanoparticles for physics, chemistry and biology. Imperial College Press, London

    Book  Google Scholar 

  • Lu X, Rycenga M, Skrabalak SE, Wiley B, Xia Y (2009) Chemical synthesis of novel plasmonic nanoparticles. Annu Rev Phys Chem 60:167–192

    Article  Google Scholar 

  • Luty-Błocho M, Pacławski K, Wojnicki M, Fitzner K (2013) The kinetics of redox reaction of gold(III) chloride complex ions with L-ascorbic acid. Inorg Chim Acta 395:189–196

    Article  Google Scholar 

  • Marqusee JA, Ross J (1983) Kinetics of phase transitions: theory of Ostwald ripening. J Chem Phys 79:373–378

    Article  Google Scholar 

  • Marqusee JA, Ross J (1984) Theory of Ostwald ripening: competitive growth and its dependence on volume fraction. J Chem Phys 80:536–543

    Article  Google Scholar 

  • Mayergoyz ID (2013) Plasmon resonances in nanoparticles. World Scientific Publishing Co, Singapore

    Book  Google Scholar 

  • Mazzucco S, Stéphan O, Colliex C, Pastoriza-Santos I, Liz-Marzán LM, García de Abajo J, Kociak M (2011) Spatially resolved measurements of plasmonic eigenstates in complex-shaped asymmetric nanoparticles: gold nanostars. Eur Phys J Appl Phys 54:33512

    Article  Google Scholar 

  • McClurg RB (2002) Nucleation rate and primary particle size distribution. J Chem Phys 117:5328–5336

    Article  Google Scholar 

  • Murphy CJ, Sau TK, Gole AM, Orendorff CJ, Gao J, Gou L, Hunyadi SE, Li TJ (2005) Anisotropic metal nanoparticles: synthesis assembly and optical applications. J Phys Chem B 109:13857–13870

    Article  Google Scholar 

  • Pallavicini P, Chirico G, Collini M, Dacarro G, Donà A, D’Alfonso L, Falqui A, Diaz-Fernandez Y, Freddi S, Garofalo B et al (2011) Synthesis of branched Au nanoparticles with tunable near-infrared LSPR using a zwitterionic surfactant. Chem Commun 47:1315–1317

    Article  Google Scholar 

  • Pallavicini P, Donà A, Casu A, Chirico G, Collini M, Dacarro G, Falqui A, Milanese C, Sironi L, Taglietti A (2013) Triton X-100 for three-plasmon gold nanostars with two photothermally active NIR (near IR) and SWIR (short-wavelength IR) channels. Chem Commun 49:6265–6267

    Article  Google Scholar 

  • Park J, Privman V, Matijevic E (2001) Model of formation of monodispersed colloids. J Phys Chem B 105:11630–11635

    Article  Google Scholar 

  • Patala S, Marks LD, Olvera de la Cruz M (2013) Thermodynamic analysis of multiply-twinned particles: surface stress effects. J Phys Chem Lett 4:3089–3094

    Article  Google Scholar 

  • Pong BK, Elim HI, Chong JX, Ji W, Trout BL, Lee JY (2007) New insights on the nanoparticle growth mechanism in the citrate reduction of gold(III) salt: formation of the Au nanowire intermediate and its nonlinear optical properties. J Phys Chem C 111:6281–6287

    Article  Google Scholar 

  • Privman V, Goia DV, Park J, Matijevic E (1999) Mechanism of formation of monodispersed colloids by aggregation of nanosize precursors. J Colloid Interface Sci 213:36–45

    Article  Google Scholar 

  • Richards V (2010) Nucleation control in size and dispersity in metallic nanoparticles: the prominent role of particle aggregation. Dissertation: Washington University

  • Ringe E, Langille MR, Sohn K, Zhang J, Huang JX, Mirkin CA, Van Duyne RP, Marks LD (2012) Plasmon length: a universal parameter to describe size effects in gold nanoparticles. J Phys Chem Lett 3:1479–1483

    Article  Google Scholar 

  • Robb DT, Privman V (2008) Model of nanocrystal formation in solution by burst nucleation and diffusional growth. Langmuir 24:26–35

    Article  Google Scholar 

  • Robb DT, Halaciuga I, Privman V, Goia DV (2008) Computational model for the formation of uniform silver spheres by aggregation of nanosize precursors. J Chem Phys 129:184705–184711

    Article  Google Scholar 

  • Romero I, Aizpurua J, Bryant GW, García de Abajo FJ (2006) Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers. Opt Express 14:9988–9999

    Article  Google Scholar 

  • Sarid D, Challener WA (2009) Modern introduction to surface plasmons. Cambridge University Press, Cambridge

    Google Scholar 

  • Schoenauer D, Kreibig U (1985) Topography of samples with variably aggregated metal particles. Surf Sci 156:100–111

    Article  Google Scholar 

  • Shore JD, Perchak D, Shnidman Y (2000) Simulations of the nucleation of AgBr from solution. J Chem Phys 113:6276–6284

    Article  Google Scholar 

  • Sperling RA, Rivera GP, Zhang F, Zanella M, Parak WJ (2008) Biological applications of gold nanoparticles. Chem Soc Rev 37:1896–1908

    Article  Google Scholar 

  • Stathis EC, Fabrikanos A (1958) Preparation of colloidal gold. Chem Ind 27:860–861

    Google Scholar 

  • Streszewskia B, Jaworski W, Pacławski K, Csapo E, Dekany I, Fitzner K (2012) Gold nanoparticles formation in the aqueous system of gold(III) chloride complex ions and hydrazine sulfate—kinetic studies. Colloids Surf A 397:63–72

    Article  Google Scholar 

  • Turkevich J (1985a) Colloidal gold. Part I. Gold Bull 18:86–91

    Article  Google Scholar 

  • Turkevich J (1985b) Colloidal gold. Part II. Gold Bull 18:125–131

    Article  Google Scholar 

  • Turkevich J, Stevenson PC, Hillier J (1951) A study of the nucleation and growth process in the synthesis of colloidal gold. Discuss Faraday Soc 11:55–75

    Article  Google Scholar 

  • Turkevich J, Stevenson PC, Hillier J (1953) The formation of colloidal gold. J Phys Chem 57:670–673

    Article  Google Scholar 

  • Van de Broek B, Grandjean D, Trekker J, Ye J, Verstreken K, Maes G, Borghs G, Nikitenko S, Lagae L, Bartic C, Temst K et al (2011) Temperature determination of resonantly excited plasmonic branched gold nanoparticles by X-ray absorption spectroscopy. Small 7:2498–2506

    Google Scholar 

  • Vlieger J, Bedeaux D (1985) A statistical theory for the dielectric properties of thin island films: application and comparison with experimental results. Thin Solid Films 102:265–281

    Google Scholar 

  • Voorhees PW (1985) The theory of Ostwald ripening. J Stat Phys 38:231–252

    Article  Google Scholar 

  • Voorhees PW, Glicksman ME (1984) Solution to the multi-particle diffusion problem with applications to Ostwald ripening—I theory. Acta Metall 32:2001–2011

    Article  Google Scholar 

  • Watzky MA, Finke RG (1997) Transition metal nanocluster formation kinetic and mechanistic studies. A new mechanism when hydrogen is the reductant: slow continuous nucleation and fast autocatalytic surface growth. J Am Chem Soc 119:10382–10400

    Article  Google Scholar 

  • Xia Y, Xiong Y, Lim Skrabalak SE (2009) Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew Chem Int Ed Eng 48:60–103

    Article  Google Scholar 

  • Zumreoglu-Karan J (2009) A rationale on the role of intermediate Au(III)–vitamin C complexation in the production of gold nanoparticles. J Nanopart Res 11:1099–1105

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank all the students of “De Pretto” Technical Institute (Schio, Italy) who participated in this work by providing a valuable technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Fabrizi.

Ethics declarations

Conflict of interest

The authors declare that they have no potential conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Priolisi, O., Fabrizi, A., Deon, G. et al. Morphology evolution of gold nanoparticles as function of time, temperature, and Au(III)/sodium ascorbate molar ratio. J Nanopart Res 18, 1 (2016). https://doi.org/10.1007/s11051-015-3308-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-015-3308-7

Keywords

Navigation