Skip to main content

Advertisement

Log in

Highly bacterial resistant silver nanoparticles: synthesis and antibacterial activities

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

In this article, we describe a simple one-pot rapid synthesis route to produce uniform silver nanoparticles by thermal reduction of AgNO3 using oleylamine as reducing and capping agent. To enhance the dispersal ability of as-synthesized hydrophobic silver nanoparticles in water, while maintaining their unique properties, a facile phase transfer mechanism has been developed using biocompatible block co-polymer pluronic F-127. Formation of silver nanoparticles is confirmed by X-ray diffraction (XRD), transmission electron microscopy (TEM) and UV–vis spectroscopy. Hydrodynamic size and its distribution are obtained from dynamic light scattering (DLS). Hydrodynamic size and size distribution of as-synthesized and phase transferred silver nanoparticles are 8.2 ± 1.5 nm (σ = 18.3%) and 31.1 ± 4.5 nm (σ = 14.5%), respectively. Antimicrobial activities of hydrophilic silver nanoparticles is tested against two Gram positive (Bacillus megaterium and Staphylococcus aureus), and three Gram negative (Escherichia coli, Proteus vulgaris and Shigella sonnei) bacteria. Minimum inhibitory concentration (MIC) values obtained in the present study for the tested microorganisms are found much better than those reported for commercially available antibacterial agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Asharani P, Wu Y, Gong Z, Valiyaveettil S (2008) Toxicity of silver nanoparticles in zebrafish models. Nanotechnology 19:255102

    Article  ADS  Google Scholar 

  • Callegari A, Tonti D, Chergui M (2003) Photochemically grown silver nanoparticles with wavelength-controlled size and shape. Nano Lett 3:1565–1568

    Article  CAS  ADS  Google Scholar 

  • Chandaroy P, Sen A, Alexandridis P, Hui S (2002) Utilizing temperature-sensitive association of Pluronic F-127 with lipid bilayers to control liposome-cell adhesion. Biochim Biophys Acta 1559:32–42

    Article  CAS  PubMed  Google Scholar 

  • Chen M, Feng YG, Wang X, Li TC, Zhang JY, Qian DJ (2007) Silver nanoparticles capped by oleylamine: Formation, growth, and self-organization. Langmuir 23:5296–5304

    Article  CAS  PubMed  Google Scholar 

  • Chudasama B, Vala A, Andhariya N, Mehta R, Upadhyay R (2009) Enhanced antibacterial activity of bifunctional Fe3O4-Ag core-shell nanostructures. Nano Res 2:955–965

    Article  CAS  Google Scholar 

  • Cubillo A, Pecharroman C, Aguilar E, Santaren J, Moya J (2006) Antibacterial activity of copper monodispersed nanoparticles into sepiolite. J Mater Sci 41:5208–5212

    Article  ADS  Google Scholar 

  • Desai V, Kowshik M (2009) Antimicrobial activity of titanium dioxide nanoparticles synthesized by sol-gel technique. Res J Microbiol 4:97–103

    Article  CAS  Google Scholar 

  • Elechiguerra JL, Burt JL, Morons JR, Camacho-bragado A, Gao X, Lara HH, Yacaman MJ (2005) Interaction of silver nanoparticles with HIV-1. Nanobiotechnol 3:6–16

    Article  Google Scholar 

  • Esumi K, Tano T, Torigoe K, Meguru K (1990) Preparation and characterization of bimetallic Pd-Cu colloids by thermal decomposition of their acetate compounds in organic solvents. Chem Mater 2:564–567

    Article  CAS  Google Scholar 

  • Feng QL, Wu J, Chen GO, Cui FZ, Kim TN, Kim JO (2000) A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res 52:662–668

    Article  CAS  PubMed  Google Scholar 

  • Gao F, Lu QY, Komarneni S (2005) Interface reaction for the self-assembly of silver nanocrystals under microwave-assisted solvothermal conditions. Chem Mater 17:856–860

    Article  CAS  Google Scholar 

  • Gong P, Li H, He X, Wang K, Hu J, Tan W, Zhang S, Yang X (2007) Preparation and antibacterial activity of Fe3O4@Ag nanoparticles. Nanotechnology 18:285604

    Article  ADS  Google Scholar 

  • Gonzales M, Krishnan KM (2007) Phase transfer of highly monodisperse iron oxide nanocrystals with Pluronic F127 for biological applications. J Magn Magn Mater 311:59–62

    Article  CAS  ADS  Google Scholar 

  • Henglein A, Giersig M (1999) Formation of colloidal silver nanoparticles: capping action of citrate. J Phys Chem B 103:9533–9539

    Article  CAS  Google Scholar 

  • Hiramatsu H, Osterloh FE (2004) A simple large scale synthesis of nearly monodisperse gold and silver nanoparticles with adjustable sizes and with exchangeable surfactants. Chem Mater 16:2509–2511

    Article  CAS  Google Scholar 

  • Huang HH, Ni XP, Loy GL, Chew CH, Tan KL, Loh FC, Deng FC, Xu GQ (1996) Photochemical formation of silver nanoparticles in poly(N-vinylpyrrolidone). Langmuir 12:909–912

    Article  CAS  Google Scholar 

  • Jana NR, Peng XG (2003) Single-phase and gram-scale routes toward nearly monadisperse Au and other noble metal nanocrystals. J Am Chem Soc 125:14280–14281

    Article  CAS  PubMed  Google Scholar 

  • Kawashita M, Toda S, Kim HM, Kokubo T, Masuda NJ (2003) Preparation of antibacterial silver-doped silica glass microspheres. Biomed Mater Res A 66:266–274

    Article  Google Scholar 

  • Kewibig U, Vollmer M (1995) Optical properties of metal clusters. Springer, Berlin

  • Kloepfer J, Mielke R, Nadeau J (2005) Uptake of CdSe and CdSe/ZnS quantum dots into bacteria via purine-dependent mechanisms. Appl Environ Microbiol 71:2548–2557

    Article  CAS  PubMed  Google Scholar 

  • Kluytmans J, Van BA, Verbrugh H (1997) Nasal carriage of Staphylococcus aureus: epidemiology, underlying mechanisms, and associated risks. Clin Microbiol Rev 10:505–520

    CAS  PubMed  Google Scholar 

  • Kroser J (2008) Shigellosis: overview: emedicine 12

  • Kyriacou SV, Brownlow WJ, Xu X-HN (2004) Using nanoparticle optics assay for direct observation of the function of antimicrobial agents in single live bacterial cells. Biochemistry 43:140–147

    Article  CAS  PubMed  Google Scholar 

  • Lee GJ, Shin SI, Kim YC, Oh SG (2004) Preparation of silver nanorods through the control of temperature and pH of reaction medium. Mater Chem Phys 84:197–204

    Article  CAS  Google Scholar 

  • Lee D, Cohen RE, Rubner MF (2005) Antibacterial properties of Ag nanoparticle loaded multilayers and formation of magnetically directed antibacterial microparticles. Langmuir 21:9651–9659

    Article  CAS  PubMed  Google Scholar 

  • Liz-Marzan LM, Philipse AP (1995) Stable hydrosols of metallic and bimetallic nanoparticles immobilized on imogolite fibers. J Phys Chem 99:15120–15128

    Article  CAS  Google Scholar 

  • Mafune F, Kohnok JY, Takeda Y, Kondow T (2000) Structure and stability of silver nanoparticles in aqueous solution produced by laser ablation. J Phys Chem B 104:8333–8337

    Article  CAS  Google Scholar 

  • Melaiye A, Sun Z, Hindi K, Milsted A, Ely D, Reneker DH, Tessier CA, Youngs WJ (2005) Silver(I) imidazole cyclophane gem-dio\complexes encapsulated by electrospun tecophilic nanofibers: formation of nanosilver particles and antimicrobial activity. J Am Chem Soc 127:2285–2291

    Article  CAS  PubMed  Google Scholar 

  • Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346

    Article  CAS  ADS  Google Scholar 

  • Mulvaney P (1996) Surface plasmon spectroscopy of nanosized metal particles. Langmuir 12:788–800

    Article  CAS  Google Scholar 

  • Novak JP, Feldheim DL (2000) Assembly of phenylacetylene-bridged gold and silver nanoparticle arrays. J Am Chem Soc 122:3979–3980

    Article  CAS  Google Scholar 

  • Nover L, Scharf KD, Nuemann D (1983) Formation of cytoplasmic heat shock granules in tomato cell cultures and leaves. Mol Cell Biol 3:1648–1655

    CAS  PubMed  Google Scholar 

  • Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiology 73:1712–1720

    Article  CAS  Google Scholar 

  • Panacek A, Kvitek L, Prucek R, Kolar M, Vecerova R, Pizurova N, Sharma VK, Nevecna T, Zboril R (2006) Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. J Phys Chem B 110:16248–16253

    Article  CAS  PubMed  Google Scholar 

  • Qourzal S, Tamimi M, Assabbane A, Bouamrane A, Nounah A, Laanab L, Ait-Ichou Y (2006) Preparation of TiO2 photocatalyst using TiCl4 as a precursor and its photocatalytic performance. J Appl Sci 6:1553–1559

    Article  CAS  Google Scholar 

  • Raveendran P, Fu J, Wallen SL (2003) Completely “green” synthesis and stabilization of metal nanoparticles. J Am Chem Soc 125:13940–13941

    Article  CAS  PubMed  Google Scholar 

  • Roy R, Hoover MR, Bhalla AS, Slaweekl T, Dey S, Cao W, Li J, Bhaskar S (2008) Ultradilute Ag-aquasols with extraordinary bactericidal properties: role of the system Ag-O-H2O. Mater Res Innov 11:3–18

    Article  Google Scholar 

  • Sun YG, Xia YN (2002) Shape-controlled synthesis of gold and silver nanoparticles. Science 298:2176–2179

    Article  CAS  PubMed  ADS  Google Scholar 

  • Sun YG, Yin YD, Mayers BT, Herricks T, Xia YN (2002) Uniform silver nanowires can be synthesized by reducing AgNo3 with ethylene glycol in the presence of seeds and poly(vinyl pyrrolidone). Chem Mater 14:4736–4745

    Article  CAS  Google Scholar 

  • Sun YG, Mayers B, Xia YN (2003) Transformation of silver nanospheres into nanobelts and triangular nanoplates through a thermal process. Nano Lett 3:675–679

    Article  CAS  ADS  Google Scholar 

  • Taleb A, Petit C, Pileni MP (1997) Synthesis of highly monodisperse silver nanoparticles from AOT reverse micelles: a way to 2D and 3D self-organization. Chem Mater 9:950–959

    Article  CAS  Google Scholar 

  • Tiwari D, Behari J, Sen P (2008) Time and dose-dependent antimicrobial potential of Ag nanoparticles synthesized by top-down approach. Curr Sci 95:647–655

    CAS  Google Scholar 

  • Todak K (2007) Online textbook of bacteriology. University of Wisconsin-Madison, p 11

  • Toshima N, Yonezawa T, Kushihashi K (1993) Polymer-protected palladium–platinum bimetallic clusters: preparation, catalytic properties and structural considerations. J Chem Soc Faraday Trans 89:2537–2543

    Article  CAS  Google Scholar 

  • Vertelov GK, Krutyakov YA, Efremenkova OV, Olenin AY, Lisichkin GV (2008) A versatile synthesis of highly bactericidal Myramistin® stabilized silver nanoparticles. Nanotechnology 19:355707

    Article  Google Scholar 

  • Xiong YJ, Xie Y, Du GO, Liu XM, Tian XB (2002) Ultrasound-assisted self-regulation route to Ag nanorods. Chem Lett 31:98–99

    Article  Google Scholar 

  • Yamamoto O, Sawai J, Ishimura N, Kojima H, Sasumoto T (1999) Change of antibacterial activity with oxidation of ZnS powder. J Ceram Soc Jpn 107:853–856

    CAS  Google Scholar 

  • Yamamoto O, Komatsu M, Sawai J, Nakagawa Z (2004) Effect of lattice constant of zinc oxide on antibacterial characteristics. J Mater Sci 15:847–851

    CAS  Google Scholar 

  • Yanagihara N, Tanaka Y, Okamotot H (2001) Formation of silver nanoparticles in poly(methyl methacrylate) by UV irradiation. Chem Lett 30:796–797

    Article  Google Scholar 

  • Zhang ZQ, Patel RC, Kothari R, Johnson CP, Friberg SE, Aikens PA (2000) Stable silver clusters and nanoparticles prepared in polyacrylate and inverse micellar solutions. J Phys Chem B 104:1176–1182

    Article  CAS  Google Scholar 

  • Zhang J, Rana S, Srivastava R, Misra R (2008) On the chemical synthesis and drug delivery response of folate receptor-activated, polyethylene glycol-functionalized magnetite nanoparticles. Acta Biomater 4:40–48

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The work was carried out under Ramanna Fellowship Project (RVM) and FTPYS Project (AKV) awarded by the Department of Science and Technology (DST), New Delhi. Authors are thankful to Microbiology Department of Sir P.P. Institute of Science, Bhavnagar University, India for providing microorganisms and Professor S.K. Menon, Department of Chemistry, Gujarat University, India for her help in DLS measurement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhupendra Chudasama.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chudasama, B., Vala, A.K., Andhariya, N. et al. Highly bacterial resistant silver nanoparticles: synthesis and antibacterial activities. J Nanopart Res 12, 1677–1685 (2010). https://doi.org/10.1007/s11051-009-9845-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-009-9845-1

Keywords

Navigation