Skip to main content
Log in

Comparative study of chitosan- and PEG-coated lipid and PLGA nanoparticles as oral delivery systems for cannabinoids

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The cannabinoid derivative 1-naphthalenyl[4-(pentyloxy)-1-naphthalenyl]methanone (CB13) has an important therapeutic potential as analgesic in chronic pain states that respond poorly to conventional drugs. However, the incidence of its mild-to-moderate and dose-dependent adverse effects, as well as its pharmacokinetic profile, actually holds back its use in humans. Thus, the use of a suitable carrier system for oral delivery of CB13 becomes an attractive strategy to develop a valuable therapy. Polymeric poly(lactic-co-glycolic) acid (PLGA) and lipid nanoparticles (LNPs) are widely studied delivery vehicles that improve the bioavailability of lipophilic compounds and present special interest in oral delivery. Their surface can be modified to improve the adhesion of particles to the oral mucosa and increase their circulation time in blood with additives such as chitosan (CS) and polyethylene glycol (PEG), which can be feasibly incorporated onto these particles in a post-production step. In this work, CS- and PEG-modified polymeric PLGA and LNPs were successfully obtained and comparatively evaluated under the same experimental conditions as oral carriers for CB13. All the formulations presented adequate blood compatibility and absence of cytotoxicity in Caco-2 cells. Coating with CS led to a higher interaction with Caco-2 cells and a limited uptake in THP1 cells, while coating with PEG led to a limited uptake in Caco-2 cells and strongly prevented THP1 cells uptake. The performance of each formulation is discussed as a comparison of the potential of these carriers as oral delivery systems of CB13.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alhamoruni A, Lee AC, Wright KL, Larvin M, O’Sullivan SE (2010) Pharmacological effects of cannabinoids on the Caco-2 cell culture model of intestinal permeability. J Pharmacol Exp Ther 335:92–102

    Article  Google Scholar 

  • Almeida AJ, Souto E (2007) Solid lipid nanoparticles as a drug delivery system for peptides and proteins. Adv Drug Deliv Rev 59:478–490

    Article  Google Scholar 

  • Alvarez-Fuentes J, Martin-Banderas L, Munoz-Rubio I, Holgado MA, Fernandez-Arevalo M (2012) Development and validation of an RP-HPLC method for CB13 evaluation in several PLGA nanoparticle systems. Sci World J. doi:10.1100/2012/737526

    Google Scholar 

  • Attal N, Brasseur L, Guirimand D, Clermond-Griamien S, Atlami S, Bouhassira D (2004) Are oral cannabinoids safe and effective in refractory neuropathic pain? Eur J Pain 8:173–177

    Article  Google Scholar 

  • Ben Amar M (2006) Cannabinoids in medicine: a review of their therapeutic potential. J Ethnopharmacol 105:1–25

    Article  Google Scholar 

  • Bocca C, Caputo O, Cavalli RB, Gabriel L, Miglietta A, Gasco MR (1998) Phagocytic uptake of fluorescent stealth and non-stealth solid lipid nanoparticles. Int J Pharm 175:185–193

    Article  Google Scholar 

  • Chakravarthi SS, Robinson DH (2011) Enhanced cellular association of paclitaxel delivered in chitosan-PLGA particles. Int J Pharm 409:111–120

    Article  Google Scholar 

  • Das S, Chaudhury A (2011) Recent advances in lipid nanoparticle formulations with solid matrix for oral drug delivery. AAPS PharmSciTech 12:62–76

    Article  Google Scholar 

  • Date AA, Joshi MD, Patravale VB (2007) Parasitic diseases: liposomes and polymeric nanoparticles versus lipid nanoparticles. Adv Drug Deliv Rev 59:505–521

    Article  Google Scholar 

  • des Rieux A, Fievez V, Garinot M, Schneider Y, Preat V (2006) Nanoparticles as potential oral delivery systems of proteins and vaccines: a mechanistic approach. J Controlled Release 116:1–27

    Article  Google Scholar 

  • Durán-Lobato M, Muñoz-Rubio I, Holgado MÁ, Álvarez-Fuentes J, Fernández-Arévalo M, Martín-Banderas L (2014) Enhanced cellular uptake and biodistribution of a synthetic cannabinoid loaded in surface-modified poly(lactic-co-glycolic acid) nanoparticles. J Biomed Nanotechnol 10:1068–1079

    Article  Google Scholar 

  • Dziadulewicz EK, Bevan SJ, Brain CT, Coote PR, Culshaw AJ, Davis AJ, Edwards LJ, Fisher AJ, Fox AJ, Gentry C, Groarke A, Hart TW, Huber W, James LF, Kesingland A, La Vecchia L, Loong Y, Lyothier I, McNair K, O’Farrell C, Peacock M, Portmann R, Schopfer U, Yaqoob M, Zadrobilek J (2007) Naphthalen-1-yl-(4-pentyloxynaphthalen-1-yl)methanone: a potent, orally bioavailable human CB1/CB2 dual agonist with antihyperalgesic properties and restricted central nervous system penetration. J Med Chem 50:3851–3856

    Article  Google Scholar 

  • Fricker G, Kromp T, Wendel A, Blume A, Zirkel J, Rebmann H, Setzer C, Quinkert R, Martin F, Mueller-Goymann C (2010) Phospholipids and lipid-based formulations in oral drug delivery. Pharm Res 27:1469–1486

    Article  Google Scholar 

  • Froehlich E (2012) The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. Int J Nanomed 7:5577–5591

    Article  Google Scholar 

  • Garcia-Fuentes M, Prego C, Torres D, Alonso MJ (2005) A comparative study of the potential of solid triglyceride nanostructures coated with chitosan or poly(ethylene glycol) as carriers for oral calcitonin delivery. Eur J Pharm Sci 25:133–143

    Article  Google Scholar 

  • Gardin A, Kucher K, Kiese B, Appel-Dingemanse S (2009) Cannabinoid receptor agonist 13, a novel cannabinoid agonist: first in human pharmacokinetics and safety. Drug Metab Dispos 37:827–833

    Article  Google Scholar 

  • Garinot M, Fievez V, Pourcelle V, Stoffelbach F, des Rieux A, Plapied L, Theate I, Freichels H, Jerome C, Marchand-Brynaert J, Schneider Y, Preat V (2007) PEGylated PLGA-based nanoparticles targeting M cells for oral vaccination. J Controlled Release 120:195–204

    Article  Google Scholar 

  • Gref R, Luck M, Quellec P, Marchand M, Dellacherie E, Harnisch S, Blunk T, Muller RH (2000) ‘Stealth’ corona-core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption. Colloids Surf B 18:301–313

    Article  Google Scholar 

  • Gustafsson SB, Lindgren T, Jonsson M, Jacobsson SOP (2009) Cannabinoid receptor-independent cytotoxic effects of cannabinoids in human colorectal carcinoma cells: synergism with 5-fluorouracil. Cancer Chemother Pharmacol 63:691–701

    Article  Google Scholar 

  • Hall W, Solowij N (1998) Adverse effects of cannabis. Lancet 352:1611–1616

    Article  Google Scholar 

  • Harde H, Das M, Jain S (2011) Solid lipid nanoparticles: an oral bioavailability enhancer vehicle. Expert Opin Drug Deliv 8:1407–1424

    Article  Google Scholar 

  • Hart S, Fischer OM, Ullrich A (2004) Cannabinoids induce cancer cell proliferation via tumor necrosis factor alpha-converting enzyme (TACE/ADAM17)-mediated transactivation of the epidermal growth factor receptor. Cancer Res 64:1943–1950

    Article  Google Scholar 

  • Hoffart V, Ubrich N, Simonin C, Babak V, Vigneron C, Hoffman M, Lecompte T, Maincent P (2002) Low molecular weight heparin-loaded polymeric nanoparticles: formulation, characterization, and release characteristics. Drug Dev Ind Pharm 28:1091–1099

    Article  Google Scholar 

  • Hombreiro-Perez M, Siepmann J, Zinutti C, Lamprecht A, Ubrich N, Hoffman M, Bodmeier R, Maincent P (2003) Non-degradable microparticles containing a hydrophilic and/or a lipophilic drug: preparation, characterization and drug release modeling. J Controlled Release 88:413–428

    Article  Google Scholar 

  • Issa MM, Koping-Hoggard M, Artursson P (2005) Chitosan and the mucosal delivery of biotechnology drugs. Drug Discovery Today 2:1–6

    Article  Google Scholar 

  • Iversen L, Chapman V (2002) Cannabinoids: a real prospect for pain relief? Curr Opin Pharmacol 2:50–55

    Article  Google Scholar 

  • Kassim A, Mahmud HE, Yee LM, Hanipah N (2006) Electrochemical preparation and characterization of polypyrrole-polyethylene glycol conducting polymer composite films. Pac J Sci Technol 7:103–107

    Google Scholar 

  • Knop K, Hoogenboom R, Fischer D, Schubert US (2010) Poly(ethylene glycol) in drug delivery: pros and cons as well as potential alternatives. Angew Chem Int Ed 49:6288–6308

    Article  Google Scholar 

  • Ligresti A, Bisogno T, Matias I, De Petrocellis L, Cascio MG, Cosenza V, D’Argenio G, Scaglione G, Bifulco M, Sorrentini I, Di Marzo V (2003) Possible endocannabinoid control of colorectal cancer growth. Gastroenterology 125:677–687

    Article  Google Scholar 

  • Lopes R, Eleuterio CV, Goncalves LMD, Cruz MEM, Almeida AJ (2012a) Lipid nanoparticles containing oryzalin for the treatment of leishmaniasis. Eur J Pharm Sci 45:442–450

    Article  Google Scholar 

  • Lopes RM, Luisa Corvo M, Eleuterio CV, Carvalheiro MC, Scoulica E, Cruz MEM (2012b) Formulation of oryzalin (ORZ) liposomes: in vitro studies and in vivo fate. Eur J Pharm Biopharm 82:281–290

    Article  Google Scholar 

  • Lopez-Rodriguez ML, Viso A, Ortega-Gutierrez S, Diaz-Laviada I (2005) Involvement of cannabinoids in cellular proliferation. Mini Rev Med Chem 5:97–106

    Article  Google Scholar 

  • Lunov O, Syrovets T, Loos C, Beil J, Delecher M, Tron K, Nienhaus GU, Musyanovych A, Mailaender V, Landfester K, Simmet T (2011) Differential uptake of functionalized polystyrene nanoparticles by human macrophages and a monocytic cell line. ACS Nano 5:1657–1669

    Article  Google Scholar 

  • Martin-Banderas L, Alvarez-Fuentes J, Duran-Lobato M, Prados J, Melguizo C, Fernandez-Arevalo M, Angeles Holgado M (2012) Cannabinoid derivate-loaded PLGA nanocarriers for oral administration: formulation, characterization, and cytotoxicity studies. Int J Nanomed 7:5793–5806

    Google Scholar 

  • Martin-Banderas L, Duran-Lobato M, Munoz-Rubio I, Alvarez-Fuentes J, Fernandez-Arevalo M, Holgado MA (2013a) Functional PLGA NPs for oral drug delivery: recent strategies and developments. Mini Rev Med Chem 13:58–69

    Article  Google Scholar 

  • Martin-Banderas L, Saez-Fernandez E, Angeles Holgado M, Matilde Duran-Lobato M, Prados JC, Melguizo C, Arias JL (2013b) Biocompatible gemcitabine-based nanomedicine engineered by Flow Focusing (R) for efficient antitumor activity. Int J Pharm 443:103–109

    Article  Google Scholar 

  • Nafee N, Schneider M, Schaefer UF, Lehr C (2009) Relevance of the colloidal stability of chitosan/PLGA nanoparticles on their cytotoxicity profile. Int J Pharm 381:130–139

    Article  Google Scholar 

  • Owens D, Peppas N (2006) Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm 307:93–102

    Article  Google Scholar 

  • Pappo J, Ermak TH (1989) Uptake and translocation of fluorescent latex-particles by rabbit peyers patch follicle epithelium—a quantitative model for M cell uptake. Clin Exp Immunol 76:144–148

    Google Scholar 

  • Parhi R, Suresh P (2010) Production of solid lipid nanoparticles—drug loading and release mechanism. J Chem Pharm Res 2(1):211–227

    Google Scholar 

  • Parveen S, Sahoo SK (2011) Long circulating chitosan/PEG blended PLGA nanoparticle for tumor drug delivery. Eur J Pharmacol 670:372–383

    Article  Google Scholar 

  • Patel B, Gupta V, Ahsan F (2012) PEG-PLGA based large porous particles for pulmonary delivery of a highly soluble drug, low molecular weight heparin. J Controlled Release 162:310–320

    Article  Google Scholar 

  • Pedersen N, Hansen S, Heydenreich AV, Kristensen HG, Poulsen HS (2006) Solid lipid nanoparticles can effectively bind DNA, streptavidin and biotinylated ligands. Eur J Pharm Biopharm 62:155–162

    Article  Google Scholar 

  • Pertwee RG (2001) Cannabinoid receptors and pain. Prog Neurobiol 63:569–611

    Article  Google Scholar 

  • Petrova S, Miloshev S, Mateva R, Iliev I (2008) Synthesis of Amphiphilic PEG-PCL-PEG triblock copolymers. J Univ Chem Technol Metall 43:199–204

    Google Scholar 

  • Reitz C, Strachan C, Kleinebudde P (2008) Solid lipid extrudates as sustained-release matrices: the effect of surface structure on drug release properties. Eur J Pharm Sci 35:335–343

    Article  Google Scholar 

  • Sarmento B, Mazzaglia D, Bonferoni MC, Patricia Neto A, MdC Monteiro, Seabra V (2011) Effect of chitosan coating in overcoming the phagocytosis of insulin loaded solid lipid nanoparticles by mononuclear phagocyte system. Carbohydr Polym 84:919–925

    Article  Google Scholar 

  • Sarne Y, Asaf F, Fishbein M, Gafni M, Keren O (2011) The dual neuroprotective-neurotoxic profile of cannabinoid drugs. Br J Pharmacol 163:1391–1401

    Article  Google Scholar 

  • Semete B, Booysen L, Kalombo L, Ramalapa B, Hayeshi R, Swai HS (2012) Effects of protein binding on the biodistribution of PEGylated PLGA nanoparticles post oral administration. Int J Pharm 424:115–120

    Article  Google Scholar 

  • Shen H, Hu X, Yang F, Bei J, Wang S (2011) Cell affinity for bFGF immobilized heparin-containing poly(lactide-co-glycolide) scaffolds. Biomaterials 32:3404–3412

    Article  Google Scholar 

  • Singh R, Lillard JW Jr (2009) Nanoparticle-based targeted drug delivery. Exp Mol Pathol 86:215–223

    Article  Google Scholar 

  • Tabatt K, Sameti M, Olbrich C, Muller RH, Lehr CM (2004) Effect of cationic lipid and matrix lipid composition on solid lipid nanoparticle-mediated gene transfer. Eur J Pharm Biopharm 57:155–162

    Article  Google Scholar 

  • Tobio M, Gref R, Sanchez A, Langer R, Alonso MJ (1998) Stealth PLA-PEG nanoparticles as protein carriers for nasal administration. Pharm Res 15:270–275

    Article  Google Scholar 

  • Tobío M, Sanchez A, Vila A, Soriano I, Evora C, Vila-Jato J, Alonso M (2000) The role of PEG on the stability in digestive fluids and in vivo fate of PEG-PLA nanoparticles following oral administration. Colloids Surf B 18:315–323

    Article  Google Scholar 

  • Vila A, Sanchez A, Tobio M, Calvo P, Alonso M (2002) Design of biodegradable particles for protein delivery. J Controlled Release 78:15–24

    Article  Google Scholar 

  • Vila A, Gill H, McCallion O, Alonso MJ (2004) Transport of PLA-PEG particles across the nasal mucosa: effect of particle size and PEG coating density. J Controlled Release 98:231–244

    Article  Google Scholar 

  • Vila A, Sánchez A, Évora C, Soriano I, McCallion O, Alonso MJ (2005) PLA-PEG particles as nasal protein carriers: the influence of the particle size. Int J Pharm 292:43–52

    Article  Google Scholar 

  • Vonarbourg A, Passirani C, Saulnier P, Benoit J (2006) Parameters influencing the stealthiness of colloidal drug delivery systems. Biomaterials 27:4356–4373

    Article  Google Scholar 

  • Wang Q, Dong Z, Du Y, Kennedy JF (2007) Controlled release of ciprofloxacin hydrochloride from chitosan/polyethylene glycol blend films. Carbohydr Polym 69:336–343

    Article  Google Scholar 

  • Yang A, Liu W, Yang X (2012) Serum proteins opsonization and phagocytic uptake of PEG-modified PLGA nanoparticles: effect of particle size. Biotechnol Chem Mater Eng, Pts 1-3 393–395:939–942

  • Zhang ZP, Feng SS (2006a) The drug encapsulation efficiency, in vitro drug release, cellular uptake and cytotoxicity of paclitaxel-loaded poly(lactide)-tocopheryl polyethylene glycol succinate nanoparticles. Biomaterials 27:4025–4033

    Article  Google Scholar 

  • Zhang Z, Feng S (2006b) Self-assembled nanoparticles of poly(lactide)—vitamin E TPGS copolymers for oral chemotherapy. Int J Pharm 324:191–198

    Article  Google Scholar 

  • Zhang X, Sun M, Zheng A, Cao D, Bi Y, Sun J (2012) Preparation and characterization of insulin-loaded bioadhesive PLGA nanoparticles for oral administration. Eur J Pharm Sci 45:632–638

    Article  Google Scholar 

  • Zhang L, Wang S, Zhang M, Sun J (2013) Nanocarriers for oral drug delivery. J Drug Target 21:515–527

    Article  Google Scholar 

Download references

Acknowledgments

The authors were especially grateful to Dr Margarita Vega-Holm for her assistance with FT-IR analysis. Part of this work was funded by the Consejería de Innovación, Junta de Andalucía (Spain) (Project No. P09-CTS-5029). L.M-B. and M.D-L. are also grateful for the financial support from Junta Andalucía and from IV Plan Propio of University of Seville. We specially thank Microscopy and Biology Services of CITIUS (University of Seville) for technical assistance with cytometry studies. This work was also supported by projects PTDC/EBB-BIO/101237/2008 and PEst-OE/SAU/UI4013/2011 from iMed.UL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucía Martín-Banderas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Durán-Lobato, M., Martín-Banderas, L., Gonçalves, L.M.D. et al. Comparative study of chitosan- and PEG-coated lipid and PLGA nanoparticles as oral delivery systems for cannabinoids. J Nanopart Res 17, 61 (2015). https://doi.org/10.1007/s11051-015-2875-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-015-2875-y

Keywords

Navigation