Skip to main content
Log in

Genetic Manipulations in Dermatophytes

  • Published:
Mycopathologia Aims and scope Submit manuscript

Abstract

Dermatophytes are a group of closely related fungi that nourish on keratinized materials for their survival. They infect stratum corneum, nails, and hair of human and animals, accounting the largest portion of fungi causing superficial mycoses. Huge populations are suffering from dermatophytoses, though the biology of these fungi is largely unknown yet. Reasons are partially attributed to the poor amenability of dermatophytes to genetic manipulation. However, advancements in this field over the last decade made it possible to conduct genetic studies to satisfying extents. These included genetic transformation methods, indispensable molecular tools, i.e., dominant selectable markers, inducible promoter, and marker recycling system, along with improving homologous recombination frequency and gene silencing. Furthermore, annotated genome sequences of several dermatophytic species have recently been available, ensuring an optimal recruitment of the molecular tools to expand our knowledge on these fungi. In conclusion, the establishment of basic molecular tools and the availability of genomic data will open a new era that might change our understanding on the biology and pathogenicity of this fungal group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ajello L. Natural history of the dermatophytes and related fungi. Mycopathol Mycol Appl. 1974;53:93–110.

    Article  CAS  PubMed  Google Scholar 

  2. Bhadauria V, Banniza S, Wei Y, Peng YL. Reverse genetics for functional genomics of phytopathogenic fungi and oomycetes. Comp Funct Genomics. 2009. doi:10.1155/2009/380719.

    PubMed  PubMed Central  Google Scholar 

  3. Alshahni MM, Shimizu K, Yoshimoto M, et al. Genetic and phenotypic analyses of calcineurin A subunit in Arthroderma vanbreuseghemii. Med Mycol. 2016;54:207–18.

    Article  PubMed  Google Scholar 

  4. Wang L, Ma L, Leng W, et al. Analysis of part of the Trichophyton rubrum ESTs. Sci China Ser C. 2004;47:389–95.

    Article  Google Scholar 

  5. Wang L, Ma L, Leng W, et al. Analysis of the dermatophyte Trichophyton rubrum expressed sequence tags. BMC Genomics. 2006;7:255.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Zaugg C, Monod M, Weber J, et al. Gene expression profiling in the human pathogenic dermatophyte Trichophyton rubrum during growth on proteins. Eukaryot Cell. 2009;8:241–50.

    Article  CAS  PubMed  Google Scholar 

  7. Staib P, Zaugg C, Mignon B, et al. Differential gene expression in the pathogenic dermatophyte Arthroderma benhamiae in vitro versus during infection. Microbiology. 2010;156:884–95.

    Article  CAS  PubMed  Google Scholar 

  8. Yamada T, Makimura K, Satoh K, Umeda Y, Ishihara Y, Abe S. Agrobacterium tumefaciens-mediated transformation of the dermatophyte, Trichophyton mentagrophytes: an efficient tool for gene transfer. Med Mycol. 2009;47:485–94.

    Article  CAS  PubMed  Google Scholar 

  9. Yamada T, Makimura K, Hisajima T, Ito M, Umeda Y, Abe S. Genetic transformation of the dermatophyte, Trichophyton mentagrophytes, based on the use of G418 resistance as a dominant selectable marker. J Dermatol Sci. 2008;49:53–61.

    Article  CAS  PubMed  Google Scholar 

  10. Yamada Y, Maeda M, Alshahni MM, Monod M, Staib P, Yamada T. Flippase (FLP) recombinase-mediated marker recycling in the dermatophyte Arthroderma vanbreuseghemii. Microbiology. 2014;160:2122–35.

    Article  CAS  PubMed  Google Scholar 

  11. Alshahni MM, Yamada T, Takatori K, Sawada T, Makimura K. Insights into a nonhomologous integration pathway in the dermatophyte Trichophyton mentagrophytes: efficient targeted gene disruption by use of mutants lacking ligase IV. Microbiol Immunol. 2011;55:34–43.

    Article  CAS  PubMed  Google Scholar 

  12. Iwata A, Alshahni MM, Nishiyama Y, Makimura K, Abe S, Yamada T. Development of a tightly regulatable copper-mediated gene switch system in dermatophytes. Appl Environ Microbiol. 2012;78:5204–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Vermout S, Tabart J, Baldo A, Monod M, Losson B, Mignon B. RNA silencing in the dermatophyte Microsporum canis. FEMS Microbiol Lett. 2007;275:38–45.

    Article  CAS  PubMed  Google Scholar 

  14. Burmester A, Shelest E, Glöckner G, et al. Comparative and functional genomics provide insights into the pathogenicity of dermatophytic fungi. Genome Biol. 2011;12:R7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Martinez DA, Oliver BG, Gräser Y, et al. Comparative genome analysis of Trichophyton rubrum and related dermatophytes reveals candidate genes involved in infection. mBio. 2012;3:e00259-12.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Mishra NC. DNA-mediated genetic changes in Neurospora crassa. J Gen Microbiol. 1979;113:255–9.

    Article  CAS  PubMed  Google Scholar 

  17. Tilburn J, Scazzocchio C, Taylor GG, Zabicky-Zissman JH, Lockington RA, Davies RW. Transformation by integration in Aspergillus nidulans. Gene. 1983;26:205–21.

    Article  CAS  PubMed  Google Scholar 

  18. Gonzalez R, Ferrer S, Buesa J, Ramon D. Transformation of the dermatophyte Trichophyton mentagrophytes to hygromycin B resistance. Infect Immun. 1989;57:2923–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Yamada T, Makimura K, Uchida K, Yamaguchi H. Reproducible genetic transformation system for two dermatophytes, Microsporum canis and Trichophyton mentagrophytes. Med Mycol. 2005;43:533–44.

    Article  CAS  PubMed  Google Scholar 

  20. Ferreira-Nozawa MS, Silveira HC, Ono CJ, Fachin AL, Rossi A, Martinez-Rossi NM. The pH signaling transcription factor PacC mediates the growth of Trichophyton rubrum on human nail in vitro. Med Mycol. 2006;44:641–5.

    Article  CAS  PubMed  Google Scholar 

  21. Fachin AL, Ferreira-Nozawa MS, Maccheroni W Jr, Martinez-Rossi NM. Role of the ABC transporter TruMDR2 in terbinafine, 4-nitroquinoline N-oxide and ethidium bromide susceptibility in Trichophyton rubrum. J Med Microbiol. 2006;55:1093–9.

    Article  CAS  PubMed  Google Scholar 

  22. Grumbt M, Defaweux V, Mignon B, et al. Targeted gene deletion and in vivo analysis of putative virulence gene function in the pathogenic dermatophyte Arthroderma benhamiae. Eukaryot Cell. 2011;10:842–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kaufman G, Horwitz BA, Hadar R, Ullmann Y, Berdicevsky I. Green fluorescent protein (GFP) as a vital marker for pathogenic development of the dermatophyte Trichophyton mentagrophytes. Microbiology. 2004;150:2785–90.

    Article  CAS  PubMed  Google Scholar 

  24. Dobrowolska A, Stączek P. Development of transformation system for Trichophyton rubrum by electroporation of germinated conidia. Curr Genet. 2009;55:537–42.

    Article  CAS  PubMed  Google Scholar 

  25. Chakraborty BN, Patterson NA, Kapoor M. An electroporation-based system for high efficiency transformation of germinated conidia of filamentous fungi. Can J Microbiol. 1991;37:858–63.

    Article  CAS  PubMed  Google Scholar 

  26. Sánchez O, Aguirre J. Efficient transformation of Aspergillus nidulans by electroporation of germinated conidia. Fungal Genet Newsl. 1996;43:48–51.

    Google Scholar 

  27. Schiestl RH, Petes TD. Integration of DNA fragments by illegitimate recombination in Saccharomyces cerevisiae. Proc Natl Acad Sci USA. 1991;88:7585–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sánchez O, Navarro RE, Aguirre J. Increased transformation frequency and tagging of developmental genes in Aspergillus nidulans by restriction enzyme-mediated integration (REMI). Mol Gen Genet. 1998;258:89–94.

    Article  PubMed  Google Scholar 

  29. Thon MR, Nuckles EM, Vaillancourt LJ. Restriction enzyme-mediated integration used to produce pathogenicity mutants of Colletotrichum graminicola. Mol Plant Microbe Interact. 2000;13:1356–65.

    Article  CAS  PubMed  Google Scholar 

  30. de Groot MJ, Bundock P, Hooykaas PJ, Beijersbergen AG. Agrobacterium tumefaciens-mediated transformation of filamentous fungi. Nat Biotechnol. 1998;16:839–42.

    Article  PubMed  Google Scholar 

  31. Gouka RJ, Gerk C, Hooykaas PJ, et al. Transformation of Aspergillus awamori by Agrobacterium tumefaciens-mediated homologous recombination. Nat Biotechnol. 1999;17:598–601.

    Article  CAS  PubMed  Google Scholar 

  32. Sugui JA, Chang YC, Kwong-Chung KJ. Agrobacterium tumefaciens-mediated transformation of Aspergillus fumigatus: an efficient tool for insertional mutagenesis and targeted gene disruption. Appl Environ Microbiol. 2005;71:1798–802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhang X, Wang Y, Chi W, Shi Y, Chen S, Lin D, Jin Y. Metalloprotease genes of Trichophyton mentagrophytes are important for pathogenicity. Med Mycol. 2014;52:36–45.

    CAS  PubMed  Google Scholar 

  34. Fincham JRS. Transformation in fungi. Microbiol Rev. 1989;53:148–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Clancy S. DNA damage & repair: mechanisms for maintaining DNA integrity. Nat Educ. 2008;1:103.

    Google Scholar 

  36. Wach A, Brachat A, Pöhlmann R, Philippsen P. New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae. Yeast. 1994;10:1793–808.

    Article  CAS  PubMed  Google Scholar 

  37. Takahashi T, Masuda T, Koyama Y. Enhanced gene targeting frequency in ku70 and ku80 disruption mutants of Aspergillus sojae and Aspergillus oryzae. Mol Genet Genomics. 2006;275:460–70.

    Article  CAS  PubMed  Google Scholar 

  38. Choquer M, Robin G, Le Pêcheur P, Giraud C, Levis C, Viaud M. Ku70 or Ku80 deficiencies in the fungus Botrytis cinerea facilitate targeting of genes that are hard to knock out in a wild-type context. FEMS Microbiol Lett. 2008;289:225–32.

    Article  CAS  PubMed  Google Scholar 

  39. Walker JR, Corpina RA, Goldberg J. Structure of the Ku heterodimer bound to DNA and its implications for double-strand break repair. Nature. 2001;412:607–14.

    Article  CAS  PubMed  Google Scholar 

  40. Critchlow SE, Jackson SP. DNA end-joining: from yeast to man. Trends Biochem Sci. 1998;23:394–8.

    Article  CAS  PubMed  Google Scholar 

  41. Ninomiya Y, Suzuki K, Ishii C, Inoue H. Highly efficient gene replacements in Neurospora strains deficient for nonhomologous end-joining. Proc Natl Acad Sci USA. 2004;101:12248–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yamada T, Makimura K, Hisajima T, Ishihara Y, Umeda Y, Abe S. Enhanced gene replacements in Ku80 disruption mutants of the dermatophyte Trichophyton mentagrophytes. FEMS Microbiol Lett. 2009;298:208–17.

    Article  CAS  PubMed  Google Scholar 

  43. Hande PM. Orchestration of telomeres and DNA repair factors in mammalian cells: implications for cancer and ageing. In: Madame Curie Bioscience Database [Internet]. Austin (TX): Landes Bioscience; 2000. http://www.ncbi.nlm.nih.gov/books/NBK6524/.

  44. Kaster KR, Burgett SG, Ingolia TD. Hygromycin B resistance as dominant selectable marker in yeast. Curr Genet. 1984;8:353–8.

    Article  CAS  PubMed  Google Scholar 

  45. Dickman MB. Whole cell transformation of the alfalfa pathogen Colletotrichunm trifolii. Curr Genet. 1988;14:241–6.

    Article  CAS  Google Scholar 

  46. Boeke JD, LaCroute F, Fink GR. A positive selection for mutants lacking orotidine-5′-phosphate decarboxylase activity in yeast; 5-fluoro-orotic acid resistance. Mol Gen Genet. 1984;197:345–6.

    Article  CAS  PubMed  Google Scholar 

  47. Gritz L, Davies J. Plasmid-encoded hygromycin B resistance: the sequence of hygromycin B phosphotransferase gene and its expression in Escherichia coli and Saccharomyces cerevisiae. Gene. 1983;25:179–88.

    Article  CAS  PubMed  Google Scholar 

  48. Turgeon BG, Garber RC, Yoder OC. Development of a fungal transformation system based on selection of sequences with promoter activity. Mol Cell Biol. 1987;7:3297–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Leboul J, Davies J. Enzymatic modification of hygromycin B in Streptomyces hygroscopicus. J Antibiot. 1982;35:527–8.

    Article  CAS  PubMed  Google Scholar 

  50. Pettinger RC, Wolfe RN, Hoehn MM, Marks PN, Dailey WA, McGuire JM. Hygromycin I. Preliminary studies on the production and biological activity of a new antibiotic. Antibiot Chemother. 1953;3:1268–78.

    Google Scholar 

  51. Cabañas MJ, Vázquez D, Modolell J. Dual interference of hygromycin B with ribosomal translocation and with aminoacyl-tRNA recognition. Eur J Biochem. 1978;87:21–7.

    Article  PubMed  Google Scholar 

  52. Singh A, Ursic D, Davies J. Phenotypic suppression and misreading Saccharomyces cerevisiae. Nature. 1979;277:146–8.

    Article  CAS  PubMed  Google Scholar 

  53. Beck E, Ludwig G, Auerswald EA, Reiss B, Schaller H. Nucleotide sequence and exact localization of the neomycin phosphotransferase gene from transposon Tn5. Gene. 1982;19:327–36.

    Article  CAS  PubMed  Google Scholar 

  54. Mullaney EJ, Hamer JE, Roberti KA, Yelton MM, Timberlake WE. Primary structure of the trpC gene from Aspergillus nidulans. Mol Gen Genet. 1985;199:37–45.

    Article  CAS  PubMed  Google Scholar 

  55. Alshahni MM, Makimura K, Yamada T, Takatori K, Sawada T. Nourseothricin acetyltransferase: a new dominant selectable marker for the dermatophyte Trichophyton mentagrophytes. Med Mycol. 2010;48:665–8.

    Article  PubMed  Google Scholar 

  56. Krügel H, Fiedler G, Smith C, Baumberg S. Sequence and transcriptional analysis of the nourseothricin acetyltransferase-encoding gene nat1 from Streptomyces noursei. Gene. 1993;127:128–31.

    Article  Google Scholar 

  57. Cox GM, Rude TH, Dykstra CC, Perfect JR. The actin gene from Cryptococcus neoformans: structure and phylogenetic analysis. J Med Vet Mycol. 1995;33:261–6.

    Article  CAS  PubMed  Google Scholar 

  58. Perfect JR, Rude TH, Penning LM, Johnston SA. Cryptococcus neoformans TRP1 gene by complementation in Saccharomyces cerevisiae. Gene. 1992;122:213–7.

    Article  CAS  PubMed  Google Scholar 

  59. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE. Potent and specific genetic interference by double stranded RNA in Caenorhabditis elegans. Nature. 1998;391:806–11.

    Article  CAS  PubMed  Google Scholar 

  60. Li L, Chang SS, Liu Y. RNA interference pathways in filamentous fungi. Cell Mol Life Sci. 2010;67:3849–63.

    Article  CAS  PubMed  Google Scholar 

  61. Kadotani N, Nakayashiki H, Tosa Y, Mayama S. RNA silencing in the phytopathogenic fungus Magnaporthe oryzae. Mol Plant Microbe Interact. 2003;16:769–76.

    Article  CAS  PubMed  Google Scholar 

  62. Barton LM, Prade RA. Inducible RNA interference of brlAbeta in Aspergillus nidulans. Eukaryot Cell. 2008;7:2004–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Goldoni M, Azzalin G, Macino G, Cogoni C. Efficient gene silencing by expression of double stranded RNA in Neurospora crassa. Fungal Genet Biol. 2004;41:1016–24.

    Article  CAS  PubMed  Google Scholar 

  64. Monteiro MC, De Lucas JR. Study of the essentiality of the Aspergillus fumigatus triA gene, encoding RNA triphosphatase, using the heterokaryon rescue technique and the conditional gene expression driven by the alcA and niiA promoters. Fungal Genet Biol. 2010;47:66–79.

    Article  CAS  PubMed  Google Scholar 

  65. Sadowski PD. The Flp recombinase of the 2-microns plasmid of Saccharomyces cerevisiae. Prog Nucleic Acid Res Mol Biol. 1995;51:53–91.

    Article  CAS  PubMed  Google Scholar 

  66. Sternberg N, Hamilton D. Bacteriophage P1 site-specific recombination. I. Recombination between loxP sites. J Mol Biol. 1981;150:467–86.

    Article  CAS  PubMed  Google Scholar 

  67. Broach JR, Guarascio VR, Jayaram M. Recombination within the yeast plasmid 2 μm circle is site-specific. Cell. 1982;29:227–34.

    Article  CAS  PubMed  Google Scholar 

  68. Kopke K, Hoff B, Kück U. Application of the Saccharomyces cerevisiae FLP/FRT recombination system in filamentous fungi for marker recycling and construction of knockout strains devoid of heterologous genes. Appl Environ Microbiol. 2010;76:4664–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kopke K, Hoff B, Bloemendal S, Katschorowski A, Kamerewerd J, Kück U. Members of the Penicillium chrysogenum velvet complex play functionally opposing roles in the regulation of penicillin biosynthesis and conidiation. Eukaryot Cell. 2013;12:299–310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Belteki G, Gertsenstein M, Ow DW, Nagy A. Site-specific cassette exchange and germline transmission with mouse ES cells expressing phiC31 integrase. Nat Biotechnol. 2003;21:321–4.

    Article  CAS  PubMed  Google Scholar 

  71. T. rubrum Expression Database. http://www.mgc.ac.cn/TrED. Retrieved 4 Feb 2016.

  72. Dermatophyte Comparative Database. http://www.broadinstitute.org/annotation/genome/dermatophyte_comparative. Retrieved 4 Feb 2016.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsuyoshi Yamada.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alshahni, M.M., Yamada, T. Genetic Manipulations in Dermatophytes. Mycopathologia 182, 33–43 (2017). https://doi.org/10.1007/s11046-016-0039-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11046-016-0039-y

Keywords

Navigation