Skip to main content
Log in

Hygromycin B resistance as dominant selectable marker in yeast

  • Original Articles
  • Published:
Current Genetics Aims and scope Submit manuscript

Summary

Saccharomyces cerevisiae is normally sensitive to the drug hygromycin B; a hygromycin B concentration of 200 µg/ml in agar plates is sufficient to completely inhibit growth. We constructed yeast-E. coli bifunctional plasmids which confer hygromycin B resistance to Saccharomyces cerevisiae. Promoters and amino terminal coding regions of a heat shock gene, a heat shock cognate gene, and the phosphoglycerate kinase gene from yeast were fused to a bacterial hygromycin B resistance gene. In all three cases, yeast cells containing plasmids with the hybrid hygromycin B resistance gene were resistant to high levels of the drug. Yeast cells containing these plasmids can also be directly selected after transformation by using hygromycin B. The intact bacterial hygromycin B resistance gene and the kanamycin resistance gene from Tn903 were also tested in yeast for their ability to confer resistance to hygromycin B and G418. The intact bacterial genes were not effective in conferring drug resistance to yeast cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Botstein D, Falco SC, Stewart SE, Brennan M, Scherer S, Stinchcomb DT, Struhl K, Davis RW (1979) Gene 8:17–24

    Google Scholar 

  • Craig EA, McCarthy EJ, Wadsworth SC (1979) Cell 16:575–588

    Google Scholar 

  • Davies J, Smith DI (1978) A Rev Microbiol 32:469–518

    Google Scholar 

  • Dobson MJ, Tuite MF, Roberts NA, Kingsman AJ, Kingsman SM (1982) Nucleic Acids Res 10:2625–2637

    Google Scholar 

  • Gaber RF, Culbertson MR (1982) Gene 19:163–172

    Google Scholar 

  • Gonzalez A, Jimenez A, Vazquez D, Davies JE, Schindler D (1978) Biochim Biophys Acta 521:459–469

    Google Scholar 

  • Grindley NDF, Joyce CM (1980) Proc Natl Acad Sci USA 77:7176–7180

    Google Scholar 

  • Gritz L, Davies J (1983) Gene 25:179–188

    Google Scholar 

  • Hinnen A, Hicks JB, Fink GR (1978) Proc Natl Acad Sci USA 75:1929–1933

    Google Scholar 

  • Hinnen A, Farabaugh P, Ilgen C, Fink GR (1979) ICN-UCLA Symposium 14. Academic Press, New York, pp 43–50

    Google Scholar 

  • Hitzeman RA, Clarke L, Carbon J (1980) J Biol Chem 255:12073–12080

    Google Scholar 

  • Hitzeman RA, Hagie FE, Hayflick JS, Chen CY, Seeburg PH, Derynck P (1982) Nucleic Acids Res 10:7791–7808

    Google Scholar 

  • Hitzeman RA, Chen CY, Hagie FE, Patzer EJ, Liu CC, Estell DA, Miller JV, Yaffe A, Leid DG, Levinson AD, Opperman H (1983) Nucleic Acids Res 11:2745–2763

    Google Scholar 

  • Hollenberg CP (1982) Hofschneider PH, Goebel W (eds In: Gene cloning in organisms other than E. coli. Springer, New York

    Google Scholar 

  • Iimura Y, Gotoh K, Ouchi K, Nishiya T (1983) Agric Biol Chem 47:897–901

    Google Scholar 

  • Ingolia TD, Stater MR, Craig EA (1982) Mol Cell Biol 2:1388–1398

    Google Scholar 

  • Ito H, Fukuda Y, Murata K, Kimura A (1983) J Bacteriol 153:163–168

    Google Scholar 

  • Jimenez A and Davies J (1980) Nature 287:869–871

    Google Scholar 

  • Johnson RA, Walseth TF (1979) Adv. Cyclic Nucleotide Res 10:135–167

    Google Scholar 

  • Kaster KR, Burget SG, Rao RN, Ingolia TD (1983) Nucleic Acids Res 11:6895–6911

    Google Scholar 

  • Maxam A, Gilbert W (1977) Proc Natl Acad Sci USA 74:560–564

    Google Scholar 

  • Nakamura K, Inouye M (1982) EMBO Journal 1:771–775

    Google Scholar 

  • Rao RN, Allen NE, Hobbs JN, Alborn WE, Kirst HA, Paschal JW (1983) Antimicrob Agents Chemother 24:689–695

    Google Scholar 

  • Schleif RE and Wensink PC (1981) Practical methods in molecular biology. Springer, New York

    Google Scholar 

  • Struhl K, Stinchcomb DT, Scherer S, Davis RW (1979) Proc Natl Acad Sci USA 76:1035–1039

    Google Scholar 

  • Struhl K (1982) Nature 300:284–287

    Google Scholar 

  • Vieira J, Messing J (1982) Gene 19:259–268

    Google Scholar 

  • Woolford JL, Jr, Rosbash M (1981) Nucleic Acids Res 9:5021–5036

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaster, K.R., Burgett, S.G. & Ingolia, T.D. Hygromycin B resistance as dominant selectable marker in yeast. Curr Genet 8, 353–358 (1984). https://doi.org/10.1007/BF00419824

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00419824

Key words

Navigation