Skip to main content
Log in

Multibody dynamic modeling and motion analysis of flexible robot considering contact

  • Research
  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

The purpose of this research is to present an alternative multibody dynamic model for soft robots and to analyze the intrinsic mechanism of motion. It is difficult to directly apply traditional robot modeling methods due to the large structural deformation of soft walking robots. This paper establishes the dynamic modeling of a soft robot system with contact/impact based on the corotational formulation of the special Euclidean group \(SE\)(2). The experiments are designed to verify the dynamic model of the robot. The history of the marked points on the robot prototype is measured in real time by an ARAMIS Adjustable Camera System. Based on the dynamic model, we conducted an in-depth analysis of the entire process through which the robot achieves directional walking utilizing complex friction characteristics. Notably, the robot’s kick-up phenomenon attracted our attention, and an analytical model for predicting the critical drive acceleration is proposed. The conditions and mechanisms of the robot’s kick-up are analyzed, and effective direction is provided for designing new drive laws. Finally, several sets of key parameters affecting the walking efficiency are analyzed using the multibody model, which can provide scientific guidance for the material selection and optimization of the robot. The presented dynamic modeling approach can be freely extended to other soft robots, which will provide valuable references for the design and analysis of soft robots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Yang, Y., He, Z., Lin, G., Wang, H., Jiao, P.: Large deformation mechanics of the thrust performances generated by combustion-enabled soft actuators. Int. J. Mech. Sci. 229, 107513 (2022)

    Article  Google Scholar 

  2. Ebrahimi, S., Kövecses, J.: Sensitivity analysis for estimation of inertial parameters of multibody mechanical systems. Mech. Syst. Signal Process. 24, 19–28 (2010)

    Article  ADS  Google Scholar 

  3. Cammarata, A., Pappalardo, C.M.: On the use of component mode synthesis methods for the model reduction of flexible multibody systems within the floating frame of reference formulation. Mech. Syst. Signal Process. 142, 106745 (2020)

    Article  Google Scholar 

  4. DeMario, A., Zhao, J.: Development and Analysis of a Three-Dimensional Printed Miniature Walking Robot With Soft Joints and Links. J. Mech. Robot. 10 (2018)

  5. Farid, Y., Majd, V.J., Ehsani-Seresht, A.: Fractional-order active fault-tolerant force-position controller design for the legged robots using saturated actuator with unknown bias and gain degradation. Mech. Syst. Signal Process. 104, 465–486 (2018)

    Article  ADS  Google Scholar 

  6. Li, Y., Chen, Y., Ren, T., Li, Y., Choi, S.H.: Precharged Pneumatic Soft Actuators and Their Applications to Untethered Soft Robots. Soft. Robot. 5, 567–575 (2018)

    Article  PubMed  Google Scholar 

  7. Odry, Á., Fullér, R., Rudas, I.J., Odry, P.: Kalman filter for mobile-robot attitude estimation: Novel optimized and adaptive solutions. Mech. Syst. Signal Process. 110, 569–589 (2018)

    Article  ADS  Google Scholar 

  8. Ishida, M., Drotman, D., Shih, B., Hermes, M., Luhar, M., Tolley, M.T.: Morphing Structure for Changing Hydrodynamic Characteristics of a Soft Underwater Walking Robot. IEEE Robot. Autom. Lett. 4, 4163–4169 (2019)

    Article  Google Scholar 

  9. Sun, Y.-C., Leaker, B.D., Lee, J.E., Nam, R., Naguib, H.E.: Shape programming of polymeric based electrothermal actuator (ETA) via artificially induced stress relaxation. Sci. Rep. 9, 11445 (2019)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  10. Zhang, Y., Liu, H., Ma, T., Hao, L., Li, Z.: A comprehensive dynamic model for pneumatic artificial muscles considering different input frequencies and mechanical loads. Mech. Syst. Signal Process. 148, 107133 (2021)

    Article  Google Scholar 

  11. Baines, R., Patiballa, S.K., Booth, J., Ramirez, L., Sipple, T., Garcia, A., Fish, F., Kramer-Bottiglio, R.: Multi-environment robotic transitions through adaptive morphogenesis. Nature 610, 283–289 (2022)

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Zhu, B., Zhang, X., Fatikow, S.: Level Set-Based Topology Optimization of Hinge-Free Compliant Mechanisms Using a Two-Step Elastic Modeling Method. J. Mech. Des. 136 (2014)

  13. Rus, D., Tolley, M.T.: Design, fabrication and control of soft robots. Nature 521, 467–475 (2015)

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Liu, C.H., Chung, F.M., Ho, Y.P.: Topology Optimization for Design of a 3D-Printed Constant-Force Compliant Finger. IEEE/ASME Trans. Mechatron. 26, 1828–1836 (2021)

    Article  Google Scholar 

  15. Liu, C.-H., Huang, G.-F., Chiu, C.-H., Pai, T.-Y.: Topology Synthesis and Optimal Design of an Adaptive Compliant Gripper to Maximize Output Displacement. J. Intell. Robot. Syst. 90, 287–304 (2018)

    Article  Google Scholar 

  16. Hongying Zhang, A.S.K., Ying Hsi Fuh, J., Wang, M.Y.: Design and Development of a Topology-Optimized Three-Dimensional Printed Soft Gripper. Soft. Robot. 5, 650–661 (2018)

    Article  PubMed  Google Scholar 

  17. Wu, T., Liu, Z., Wang, B., Ma, Z., Ma, D., Deng, X.: A Versatile Topology-Optimized Compliant Actuator for Soft Robotic Gripper and Walking Robot. Soft. Robot. (2023)

  18. Tolley, M.T., Shepherd, R.F., Mosadegh, B., Galloway, K.C., Wehner, M., Karpelson, M., Wood, R.J., Whitesides, G.M.: A Resilient, Untethered Soft Robot. Soft. Robot. 1, 213–223 (2014)

    Article  Google Scholar 

  19. Tang, Y., Chi, Y., Sun, J., Huang, T.-H., Maghsoudi, O.H., Spence, A., Zhao, J., Su, H., Yin, J.: Leveraging elastic instabilities for amplified performance: Spine-inspired high-speed and high-force soft robots. Nat. Commun. 6, eaaz6912 (2020)

    Google Scholar 

  20. Jin, H., Dong, E., Alici, G., Mao, S., Min, X., Liu, C., Low, K.H., Yang, J.: A starfish robot based on soft and smart modular structure (SMS) actuated by SMA wires. Bioinspir. Biomim. 11, 056012 (2016)

    Article  ADS  PubMed  Google Scholar 

  21. Bell, M.A., Weaver, J.C., Wood, R.J.: An Ambidextrous STarfish-Inspired Exploration and Reconnaissance Robot (The ASTER-bot). Soft. Robot. (2021)

  22. Mao, S., Dong, E., Jin, H., Xu, M., Zhang, S., Yang, J., Low, K.H.: Gait Study and Pattern Generation of a Starfish-Like Soft Robot with Flexible Rays Actuated by SMAs. J. Bionics Eng. 11, 400–411 (2014)

    Article  Google Scholar 

  23. Rich, S.I., Wood, R.J., Majidi, C.: Untethered soft robotics. Nat. Electron. 1, 102–112 (2018)

    Article  Google Scholar 

  24. Coyle, S., Majidi, C., LeDuc, P., Hsia, K.J.: Bio-inspired soft robotics: Material selection, actuation, and design. Extrem. Mechan. Lett. 22, 51–59 (2018)

    Article  Google Scholar 

  25. Laschi, C.: Octobot - A robot octopus points the way to soft robotics. IEEE Spectr. 54, 38–43 (2017)

    Article  Google Scholar 

  26. Joyee, E.B., Pan, Y.: A Fully Three-Dimensional Printed Inchworm-Inspired Soft Robot with Magnetic Actuation. Soft. Robot. 6, 333–345 (2019)

    Article  PubMed  Google Scholar 

  27. Gamus, B., Salem, L., Gat, A.D., Or, Y.: Understanding Inchworm Crawling for Soft-Robotics. IEEE Robot. Autom. Lett. 5, 1397–1404 (2020)

    Article  Google Scholar 

  28. Zhang, J., Wang, T., Wang, J., Li, B., Hong, J., Zhang, J.X.J., Wang, M.Y.: Dynamic modeling and simulation of inchworm movement towards bio-inspired soft robot design. Bioinspir. Biomim. 14, 066012 (2019)

    Article  ADS  PubMed  Google Scholar 

  29. Xie, R., Su, M., Zhang, Y., Li, M., Zhu, H., Guan, Y.: PISRob: A Pneumatic Soft Robot for Locomoting Like an Inchworm. In: 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 3448–3453 (2018)

    Chapter  Google Scholar 

  30. Li, H., Xu, Y., Zhang, C., Yang, H.: Kinematic modeling and control of a novel pneumatic soft robotic arm. Chin. J. Aeronaut. (2021)

  31. Mahl, T., Hildebrandt, A., Sawodny, O.: A variable curvature continuum kinematics for kinematic control of the bionic handling assistant. IEEE Trans. Robot. 30, 935–949 (2014)

    Article  Google Scholar 

  32. Rone, W.S., Ben-Tzvi, P.: Mechanics modeling of multisegment rod-driven continuum robots. J. Mech. Robot. 6 (2014)

  33. Shabana, A.A.: An overview of the ANCF approach, justifications for its use, implementation issues, and future research directions. Multibody Syst. Dyn. (2023)

  34. Sharma, A.K., Joglekar, M.M.: A numerical framework for modeling anisotropic dielectric elastomers. Comput. Methods Appl. Mech. Eng. 344, 402–420 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  35. Xu, Q., Liu, J., Qu, L.: Dynamic modeling for silicone beams using higher-order ANCF beam elements and experiment investigation. Multibody Syst. Dyn. 46, 307–328 (2019)

    Article  MathSciNet  Google Scholar 

  36. Flores, P., Machado, M., Silva, M.T., Martins, J.M.: On the continuous contact force models for soft materials in multibody dynamics. Multibody Syst. Dyn. 25, 357–375 (2011)

    Article  Google Scholar 

  37. Armanini, C., Boyer, F., Mathew, A.T., Duriez, C., Renda, F.: Soft Robots Modeling: A Structured Overview. IEEE Trans. Robot. 39, 1728–1748 (2023)

    Article  Google Scholar 

  38. Sadati, S.M.H., Naghibi, S.E., da Cruz, L., Bergeles, C.: Reduced order modeling and model order reduction for continuum manipulators: an overview. Front. Robot. AI 10, 1094114 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Brüls, O., Cardona, A., Arnold, M.: Lie group generalized-\(\alpha \) time integration of constrained flexible multibody systems. Mech. Mach. Theory 48, 121–137 (2012)

    Article  Google Scholar 

  40. Chen, J., Huang, Z., Tian, Q.: A multisymplectic Lie algebra variational integrator for flexible multibody dynamics on the special Euclidean group SE (3). Mech. Mach. Theory 174, 104918 (2022)

    Article  Google Scholar 

  41. Pierallini, M., Stella, F., Angelini, F., Deutschmann, B., Hughes, J., Bicchi, A., Garabini, M., Della Santina, C.: A Provably Stable Iterative Learning Controller for Continuum Soft Robots. IEEE Robot. Autom. Lett. (2023)

  42. Santina, C.D., Katzschmann, R.K., Biechi, A., Rus, D.: Dynamic control of soft robots interacting with the environment. In: 2018 IEEE International Conference on Soft Robotics (RoboSoft), pp. 46–53 (2018)

    Chapter  Google Scholar 

  43. Santina, C.D., Duriez, C., Rus, D.: Model-Based Control of Soft Robots: A Survey of the State of the Art and Open Challenges. IEEE Control Syst. Mag. 43, 30–65 (2023)

    Article  MathSciNet  Google Scholar 

  44. Renda, F., Boyer, F., Dias, J., Seneviratne, L.: Discrete Cosserat Approach for Multisection Soft Manipulator Dynamics. IEEE Trans. Robot. 34, 1518–1533 (2018)

    Article  Google Scholar 

  45. Xu, Q., Liu, J.: An improved dynamic formulation for nonlinear response analysis of thin soft silicone plates with large deflection. Thin-Walled Struct. 176, 109333 (2022)

    Article  Google Scholar 

  46. Luo, K., Tian, Q., Hu, H.: Dynamic modeling, simulation and design of smart membrane systems driven by soft actuators of multilayer dielectric elastomers. Nonlinear Dyn. 102, 1463–1483 (2020)

    Article  Google Scholar 

  47. Tian, Q., Zhang, P., Luo, K.: Dynamics of soft mechanical systems actuated by dielectric elastomers. Mech. Syst. Signal Process. 151, 107392 (2021)

    Article  Google Scholar 

  48. Chen, L., Yang, C., Wang, H., Branson, D.T., Dai, J.S., Kang, R.: Design and modeling of a soft robotic surface with hyperelastic material. Mech. Mach. Theory 130, 109–122 (2018)

    Article  Google Scholar 

  49. Haibin, Y., Cheng, K., Junfeng, L., Guilin, Y.: Modeling of grasping force for a soft robotic gripper with variable stiffness. Mech. Mach. Theory 128, 254–274 (2018)

    Article  Google Scholar 

  50. Li, J.: Position control based on the estimated bending force in a soft robot with tunable stiffness. Mech. Syst. Signal Process. 134, 106335 (2019)

    Article  Google Scholar 

  51. Chih-Hsing Liu, T.-L.C., Chiu, C.-H., Hsu, M.-C., Chen, Y., Pai, T.-Y., Peng, W.-G., Chiang, Y.-P.: Optimal Design of a Soft Robotic Gripper for Grasping Unknown Objects. Soft. Robot. 5, 452–465 (2018)

    Article  PubMed  Google Scholar 

  52. Liu, C.-H., Chiu, C.-H., Chen, T.-L., Pai, T.-Y., Hsu, M.-C., Chen, Y.: Topology Optimization and Prototype of a Three-Dimensional Printed Compliant Finger for Grasping Vulnerable Objects With Size and Shape Variations. J. Mech. Robot. 10 (2018)

  53. Le, T.-N., Battini, J.-M., Hjiaj, M.: Efficient formulation for dynamics of corotational 2D beams. Comput. Mech. 48, 153–161 (2011)

    Article  MathSciNet  Google Scholar 

  54. You, P., Liu, Z., Ma, Z.: A 2D Corotational Beam Formulation Based On the Local Frame of Special Euclidean Group SE(2). J. Comput. Nonlinear Dyn., 1–20 (2023)

  55. Chirikjian, G.S.: Stochastic models, information theory, and Lie groups, volume 2: Analytic methods and modern applications. Springer, Berlin (2011)

    Google Scholar 

  56. Ma, Z., Liu, Z., You, P.: A 3D corotational beam element formulated on the special Euclidean group SE(3). Comput. Struct. 281, 107011 (2023)

    Article  Google Scholar 

  57. Pennestrì, E., Rossi, V., Salvini, P., Valentini, P.P.: Review and comparison of dry friction force models. Nonlinear Dyn. 83, 1785–1801 (2016)

    Article  Google Scholar 

  58. Zhang, H., Guo, J.-Q., Liu, J.-P., Ren, G.-X.: An efficient multibody dynamic model of arresting cable systems based on ALE formulation. Mech. Mach. Theory 151, 103892 (2020)

    Article  Google Scholar 

  59. You, P., Liu, Z., Ma, Z.: Multibody dynamic modeling and analysis of cable-driven snake robot considering clearance and friction based on ALE method. Mech. Mach. Theory 184, 105313 (2023)

    Article  Google Scholar 

  60. MSC.Software: Adams/View help manual (2012)

  61. Sapietová, A., Gajdoš, L., Dekýš, V., Sapieta, M.: Analysis of the Influence of Input Function Contact Parameters of the Impact Force Process in the MSC. ADAMS. In: Jabłoński, R., Brezina, T. (eds.) Advanced Mechatronics Solutions, pp. 243–253. Springer, Cham (2016)

    Chapter  Google Scholar 

  62. Arnold, M., Brüls, O.: Convergence of the generalized-\(\alpha \) scheme for constrained mechanical systems. Multibody Syst. Dyn. 18, 185–202 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Funding

This research was supported by the General Program (No. 12272222) and the Key Program (No. 11932001) of the National Natural Science Foundation of China, for which the authors are grateful.

Author information

Authors and Affiliations

Authors

Contributions

All authors were involved in the conceptualization and design of the study. Tingke Wu, Ziqi Ma and Boyang Wang were involved in material preparation, data collection and analysis. Tingke Wu and Zhuyong Liu completed the first draft of the manuscript, and all authors commented on the previous version of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Zhuyong Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 A.1 Lie group

The Lie group (Group) is a collection of operations specifying some kind. A Lie group is a smooth differential manifold with group structure. The group action is compatible with the differential structure. The dynamics of a flexible multibody system can be described by a k-dimensional manifold \(G\) with a Lie group structure. The product and inverse operations of the Lie group \(G\) are smooth maps [39]. Lie groups follow the following axioms:

(i) closure: \(\mathbf{q}_{1} \cdot \mathbf{q}_{2} \in g\),

(ii) identity: \(\mathbf{e} \cdot \mathbf{q}_{1} = \mathbf{q}_{1} \cdot \mathbf{e} = \mathbf{q}_{1}\),

(iii) invertibility: \(\mathbf{q}^{ - 1} \cdot \mathbf{q} = \mathbf{q} \cdot \mathbf{q}^{ - 1} = \mathbf{e}\),

(iv) associativity: \((\mathbf{q}_{1} \cdot \mathbf{q}_{2}) \cdot \mathbf{q}_{3} = \mathbf{q}_{1} \cdot (\mathbf{q}_{2} \cdot \mathbf{q}_{3})\),

where the special element \(\mathbf{e}\) is the identity element in this group. The Cartesian vector space \(\mathbb{R}^{n}\), the special orthogonal group \(SO(n)\), and the special Euclidean group \(SE(n)\) all belong to the Lie group.

1.2 A.2 Lie algebra and left translation

The identity element \(\mathbf{e}\) is such that \(\mathbf{e} \cdot \mathbf{q} = \mathbf{q} \cdot \mathbf{e} = \mathbf{q}, \forall \mathbf{q} \in G\). \(T_{q}G\) denotes the tangent space at the point \(\mathbf{q} \in G\). The Lie algebra is defined as the tangent space at the identity \(g = T_{e}G\). The Lie algebra is isomorphic to the Cartesian vector space and can be linearly mapped by the operator (\(\boldsymbol{\cdot}\)):

$$ (\tilde{ \cdot} ):\mathbb{R}^{k} \to g, \mathbf{v} \mapsto \tilde{\mathbf{v}}. $$
(61)

Since group operations generally do not satisfy the exchange law, they can be divided into left and right translations according to the position of the action of the translation. For the element \(\mathbf{y} \in G\) the translation is defined as

$$ L_{q}(\mathbf{y}):G \to G, \mathbf{y} \mapsto \mathbf{q} \cdot \mathbf{y}, $$
(62)
$$ R_{\mathbf{q}}(\mathbf{y}):G \to G, \mathbf{y} \mapsto \mathbf{y} \cdot \mathbf{q}. $$
(63)

\(L_{q}(\mathbf{y})\) and \(R_{\mathbf{q}}(\mathbf{y})\) are the left and right translation, respectively. This paper mainly utilizes the left translation property.

Let the derivative of the group element \(\mathbf{y}\) with respect to \(t\) be defined as \(d_{t}(\mathbf{y})\):

$$ d_{t}(\mathbf{q} \cdot \mathbf{y}) = d_{t}\left ( L_{\mathbf{q}}(\mathbf{y}) \right ) = DL_{\mathbf{q}}(\mathbf{y}) = \mathbf{q} \cdot d_{t}(\mathbf{y}), $$
(64)

where \(d_{t}(\mathbf{y}) \in T_{\mathbf{y}}G\) is the tangent space of the manifold at element \(\mathbf{y}\). As shown in Fig. 6, \(DL_{\mathbf{q}}(\mathbf{y})\) defines the translation between two tangent spaces:

$$ DL_{\mathbf{q}}(\mathbf{y}):T_{\mathbf{y}}G \to T_{\mathbf{q}}G. $$
(65)

At the identity element \(\mathbf{e} \in G\), \(DL_{\mathbf{q}}(\mathbf{e})\) denotes the mapping of the tangent space at the identity element to an arbitrary point \(\mathbf{q}\). Thus, a linear mapping for \(\tilde{\mathbf{v}} \in g\) into any tangent space \(T_{\mathbf{q}}G\) is defined as

$$ DL_{\mathbf{q}}(\mathbf{e}):g \to T_{\mathbf{q}}G, \tilde{\mathbf{v}} \mapsto DL_{\mathbf{q}}(\mathbf{e}) \cdot \tilde{\mathbf{v}}. $$
(66)

Thereby, a connection between Lie groups and Lie algebras with respect to time derivatives is established. The derivative of a group element \(\mathbf{q}\) can be expressed as

$$ \dot{\mathbf{q}} = DL_{\mathbf{q}}(\mathbf{e}) \cdot \tilde{\mathbf{v}}. $$
(67)

1.3 A.3 Exponential map

The exponential mapping builds a bridge between Lie groups and Lie algebras. We take the left invariant derivative as an example:

$$ \mathbf{q}(t) = \mathbf{q}_{0}\exp (\tilde{\mathbf{v}}t), $$
(68)

where \(\mathbf{q}_{0}\) is the constant of integration, which can be interpreted as the value of the element at the initial moment. The operator exp can be expressed in the form of a series expansion. Let \(\tilde{\mathbf{v}}t = \tilde{\boldsymbol{\tau}} \). It follows that

$$ \exp (\tilde{\boldsymbol{\tau}} )\mathop{ =} \limits ^{\mathrm{def}}\sum _{i = 0}^{\infty} \frac{1}{i!} \tilde{\boldsymbol{\tau}}^{i}. $$
(69)

When \(\mathbf{q}_{0}\) is the identity element \(\mathbf{e}\), there is the following exponential mapping relation:

$$ \exp :g \to G, \tilde{\boldsymbol{\tau}} \to \mathbf{q} = \exp (\tilde{\boldsymbol{\tau}} ). $$
(70)

Equation (68) shows that any point on the manifold can be obtained from the tangent vector at the identity element through exponential mapping. The linearized exponential mapping is obtained by the derivation of Eq. (67). We have

$$ \mathbf{T}\left ( \tilde{\boldsymbol{\tau}} \right )\mathop{ =} \limits ^{\mathrm{def}}\frac{D\exp (\tilde{\boldsymbol{\tau}} )}{D\boldsymbol{\tau}} = \sum _{i = 0}^{\infty} \frac{( - 1)^{i}}{(i + 1)!} \hat{\boldsymbol{\tau}}^{i}. $$
(71)

\(\mathbf{T}\) is the tangent operator of an exponential map, which maps the variation of the Lie algebra at the identity element to the local tangent space of any point. The left invariant derivative is as follows:

$$ \exp (\widetilde{\boldsymbol{\tau} + \delta \boldsymbol{\tau}} ) \approx \exp (\tilde{\boldsymbol{\tau}} )\exp (\widetilde{\mathbf{T}\delta \boldsymbol{\tau}} ). $$
(72)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, T., Liu, Z., Ma, Z. et al. Multibody dynamic modeling and motion analysis of flexible robot considering contact. Multibody Syst Dyn (2024). https://doi.org/10.1007/s11044-024-09968-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11044-024-09968-2

Keywords

Navigation