Skip to main content
Log in

Modeling of a homogeneous isotropic half space in the context of multi-phase lag coupled thermoelasticity

  • Published:
Mechanics of Time-Dependent Materials Aims and scope Submit manuscript

Abstract

A two-dimensional multi-phase lag model in the context of generalized thermoelasticity is established for an isotropic half-space medium. A vector-matrix differential equation is obtained from the governing equations using normal mode analysis. The eigenvalue approach is applied to obtain the solutions. The temperature-dependent displacements, stresses, strains are calculated numerically and represented graphically to show the accuracy of the solution under mechanical and thermal loads.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Alharbi, A.M., Said, S.M., Abd-Elaziz, E.M., Othman, M.I.A.: Influence of initial stress and variable thermal conductivity on a fiber-reinforced magneto-thermoelastic solid with micro-temperatures by multi-phase-lags model. Int. J. Struct. Stab. Dyn. 22(01), 2250007 (2022)

    Article  MathSciNet  Google Scholar 

  • Chandrasekhariah, D.S.: Hyperbolic thermoelasticity: a review of recent literature. Appl. Mech. Rev. 21(12), 705–729 (1998)

    Article  Google Scholar 

  • Eringen, A.C.: Plane waves in non local micropolar elasticity. Int. J. Eng. Sci. 22(8–10), 1113–1121 (1984)

    Article  MATH  Google Scholar 

  • Ghosh, D., Lahiri, A.: Study on the generalized thermoelastic problem for an anisotropic medium. J. Heat Transf. 140(9), 094501 (2018)

    Article  Google Scholar 

  • Ghosh, D., Lahiri, A.: Three Dimensional Fibre-Reinforce Anisotropic Half Space with Lagging Behavior in the Presence of Heat Source and Gravity. International Journal of Applied and Computational Mathematics 6(40) (2020). Published online

  • Ghosh, D., Lahiri, A., Abbas, I.A.: Two-dimensional generalized thermo-elastic problem for anisotropic half-space. Math. Models Eng. 3(1), 27–40 (2017)

    Article  Google Scholar 

  • Ghosh, D., Lahiri, A., Kumar, R., Roy, S.: 3D thermoelastic interactions in an anisotropic lastic slab due to prescribed surface temperature. J. Solid Mech. 10(3), 502–521 (2018)

    Google Scholar 

  • Ghosh, D., Das, A.K., Lahiri, A.: Modeling of a three dimensional thermoelastic half space with three phase lags using memory dependent derivative. Int. J. Appl. Comput. Math. 5, 154–174 (2019)

    Article  MATH  Google Scholar 

  • Green, A.E., Lindsay, K.A.: Thermoelasticity. J. Elast. 2(1), 1–7 (1972)

    Article  MATH  Google Scholar 

  • Green, A.E., Naghdi, P.M.: A re-examination of the basic postulates of thermomechanics. J. Math. Phys. Sci. 432, 1885 (1991)

    MathSciNet  MATH  Google Scholar 

  • Green, A.E., Naghdi, P.M.: An undamped heat wave in an elastic solid. J. Therm. Stresses 15, 253–264 (1992)

    Article  MathSciNet  Google Scholar 

  • Green, A.E., Naghdi, P.M.: Thermoelasticity without energy dissipation. Elasticity 31, 189–208 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  • Hetnarski, R.B., Ignaczak, J.: Soliton-like waves in a low temperature nonlinear thermoelastic solid. Int. J. Eng. Service 34(15), 1767–1787 (1996)

    MathSciNet  MATH  Google Scholar 

  • Lord, H.W., Shulman, Y.: A generalized dynamical theory of thermoelasticity. J. Mech. Phys. Solids 15(5), 299–309 (1967)

    Article  MATH  Google Scholar 

  • Quintanilla, R., Racke, R.: A note on stability in three-phase-lag heat conduction. Int. J. Heat Mass Transform. 51, 24–29 (2008)

    Article  MATH  Google Scholar 

  • Roy Choudhuri, S.K.: On a thermoelastic three-phase-lag model. J. Therm. Stresses 30(3), 231–238 (2007)

    Article  Google Scholar 

  • Sardar, S.S., Ghosh, D., Das, B., Lahiri, A.: On a multi-phase lag model of three-dimensional coupled thermoelasticity in an anisotropic half-space. In: Waves in Random and Complex Media (2022). Vol: Published online: 06 Jul 2022

    Google Scholar 

  • Tzou, D.Y.: Unified field approach for heat conduction from micro- to macro-scales. SME J. Heat Transf. 117, 8–16 (1995)

    Article  Google Scholar 

  • Tzou, D.Y.: Thermal shock phenomena under high rate response in solids. Heat Transf. Eng. 4, 111–185 (1999)

    Google Scholar 

  • Yang, F., Chong, A.C.M., Lam, D.C.C., Tong, P.: Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39, 2731–2743 (2002)

    Article  MATH  Google Scholar 

  • Zenkour, Ashraf M.: Refined microtemperatures multi-phase-lags theory for plane wave propagation in thermoelastic medium. Results Phys. 11, 929–937 (2018)

    Article  Google Scholar 

  • Zenkour, Ashraf M.: Refined two-temperature multi-phase-lags theory for thermomechanical response of microbeams using the modified couple stress analysis. Acta Mech. 229, 3671–3692 (2018)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to this work.

Corresponding author

Correspondence to Debkumar Ghosh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1

Appendix 1

$$\begin{aligned} M_{11}=&aC_{12}+\omega ^{2}-\Omega ^{2},\quad M_{12}=M_{13}=M_{14}=0,\quad M_{15}=-iaC_{11},\quad M_{16}=1, \\ M_{21}=& M_{25}=M_{26}=0,\quad M_{22}= \frac{a^{2}+\omega ^{2}+\Omega ^{2}}{C_{21}},\quad M_{23}=- \frac{ia}{C_{21}},\quad M_{24}=-\frac{iaC_{22}}{C_{21}}, \\ M_{31}=&M_{35}=M_{36}=0,\quad M_{32}=ia \frac{\gamma ^{2}T_{0}}{\rho ^{2}C_{1}^{2}C_{E}}, \\ M_{33}=&a^{2}\frac{K_{22}}{K_{11}}+ \frac{\omega ^{2}\Bigg(\overline{R}+\tau _{0}\omega +\sum _{n=1}^{N}\frac{\tau _{q}^{n+1}}{(n+1)!}\omega ^{n+1}\Bigg)}{\frac{K_{11}}{\rho C_{E}C_{1}^{2}}\Bigg(1+\sum _{n=1}^{N}\frac{\tau _{\theta}^{n}}{n!}\omega ^{n}\Bigg)}, \, \\ M_{34}=& \frac{\gamma ^{2}T_{0}}{\rho ^{2}C_{1}^{2}C_{E}} \frac{\omega ^{2}\Bigg(\overline{R}+\tau _{0}\omega +\sum _{n=1}^{N}\frac{\tau _{q}^{n+1}}{(n+1)!}\omega ^{n+1}\Bigg)}{\frac{K_{11}}{\rho C_{E}C_{1}^{2}}\Bigg(1+\sum _{n=1}^{N}\frac{\tau _{\theta}^{n}}{n!}\omega ^{n}\Bigg)}\\ C_{11}=&C_{22}=\frac{\lambda +\mu +\frac{P}{2}}{\lambda +2\mu},\quad C_{12}=C_{21}= \frac{\mu -\frac{P}{2}}{\lambda +2\mu}\\ C_{41}=&\frac{\lambda +2\mu +\rho}{\rho c_{1}^{2}},\quad C_{42}= \frac{\lambda +P}{\rho c_{1}^{2}},\quad C_{51}= \frac{\mu -\frac{P}{2}}{\rho c_{1}^{2}},\quad c_{52}= \frac{\mu +\frac{P}{2}}{\rho c_{1}^{2}}\\ A=&\left ( \textstyle\begin{array}{c@{\quad}c} L_{11} & L_{12} \\ L_{21} & L_{22} \end{array}\displaystyle \right ) \qquad L_{11}=\left ( \textstyle\begin{array}{c@{\quad}c@{\quad}c} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\displaystyle \right ) \qquad L_{12}=\left ( \textstyle\begin{array}{c@{\quad}c@{\quad}c} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\displaystyle \right ) \\ L_{21}=&\left ( \textstyle\begin{array}{c@{\quad}c@{\quad}c} M_{11} & M_{12} & M_{13} \\ M_{21} & M_{22} & M_{23} \\ M_{31} & M_{32} & M_{33} \end{array}\displaystyle \right ) \qquad L_{22}=\left ( \textstyle\begin{array}{c@{\quad}c@{\quad}c} M_{14} & M_{15} & M_{16} \\ M_{24} & M_{25} & M_{26} \\ M_{34} & M_{35} & M_{36} \end{array}\displaystyle \right ) \end{aligned}$$
$$\begin{aligned} \textstyle\begin{array}{c@{\quad}c@{\quad}c} f_{11}=M_{11}+\lambda M_{14}-\lambda ^{2} & f_{21}=M_{21}+\lambda M_{24} & f_{31}=M_{31}+\lambda M_{34} \\ f_{12}=M_{12}+\lambda M_{15} & f_{22}=M_{22}+\lambda M_{25}-\lambda ^{2} & f_{32}=M_{32}+\lambda M_{35} \\ f_{13}=M_{13}+\lambda M_{16} & f_{23}=M_{23}+\lambda M_{26} & f_{33}=M_{33}+ \lambda M_{36}-\lambda ^{2} \end{array}\displaystyle \end{aligned}$$
$$\begin{aligned} R_{1i}(x) =& [-C_{41}\lambda _{i}(delta_{1})_{\lambda =\lambda _{i}}+iaC_{42}( \delta _{2})_{\lambda =-\lambda _{i}}-(\delta _{3})_{\lambda = \lambda _{i}}]e^{-\lambda _{i}x},\ i=1,2,3 \\ R_{2i}(x) = &[iaC_{41}(\delta _{2})_{\lambda =-\lambda _{i}}-C_{42} \lambda _{1}(\delta _{1})_{\lambda =-\lambda _{i}}-(\delta _{3})_{ \lambda =-\lambda _{i}}]e^{-\lambda _{i}x},\ i=1,2,3 \\ R_{3i}(x) = &[-C_{51}\lambda _{i}(\delta _{2})_{\lambda =-\lambda _{i}}+iaC_{52}( \delta _{1})_{\lambda =-\lambda _{i}}]e^{-\lambda _{i}x},\ i=1,2,3 \end{aligned}$$
$$\begin{aligned} z_{1} &= \sigma _{0}e^{i\omega t} \\ z_{2}& = T_{0}e^{i\omega t} \end{aligned}$$
$$\begin{aligned} S_{ij} =& R_{ij}(0),\quad i=1,4,\quad j=1,2,3 \\ S_{5k} =& R_{5k}(x),\quad k=1,2,3 \end{aligned}$$
$$D_{1}= \begin{vmatrix} z_{1} & S_{12} & S_{13} \\ z_{2} & S_{42} & S_{43} \\ 0 & S_{52} & S_{53} \end{vmatrix} \quad D_{2}= \begin{vmatrix} S_{11} & z_{1} & S_{13} \\ S_{41} & z_{2} & S_{43} \\ S_{51} & 0 & S_{53} \end{vmatrix} $$
$$D_{3}= \begin{vmatrix} S_{11} & S_{12} & z_{1} \\ S_{41} & S_{42} & z_{2} \\ S_{51} & S_{52} & 0 \end{vmatrix} \quad D= \begin{vmatrix} S_{11} & S_{12} & S_{13} \\ S_{41} & S_{42} & S_{43} \\ S_{51} & S_{52} & S_{53} \end{vmatrix} $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lahiri, A., Sardar, S.S. & Ghosh, D. Modeling of a homogeneous isotropic half space in the context of multi-phase lag coupled thermoelasticity. Mech Time-Depend Mater (2022). https://doi.org/10.1007/s11043-022-09584-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11043-022-09584-7

Keywords

Navigation