Skip to main content
Log in

Temperature Dependence of the Elastic Modulus in Three-Dimensional Generalized Thermoelasticity with Dual-Phase-Lag Effects

  • Published:
Computational Mathematics and Modeling Aims and scope Submit manuscript

A three-dimensional problem for a homogeneous isotropic thermoelastic half-space solids with temperature-dependent mechanical properties subject to a time-dependent heat sources on the boundary of the half-space which is traction free is considered in the context of the generalized thermoelasticity with dual-phase-lag effects. The normal mode analysis and eigenvalue approach techniques are used to solve the resulting non-dimensional coupled field equations. Numerical results for the temperature, thermal stresses and displacement distributions are represented graphically and discussed. A comparison is made with the result obtained in the absence of the temperature dependent elastic modulus. Various problems of generalized thermoelasticity and conventional coupled dynamical thermoelasticity are deduced as special cases of our problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Biot, “Thermoelasticity and irreversible thermodynamics,” J. Appl. Phys., 27, 240–253 (1956).

    Article  MathSciNet  MATH  Google Scholar 

  2. W. Dreyer and H. Struchtrup, “Heat pulse experiments revisited,” Cont. Mech. Thermodyn., 5, 3–50 (1993).

    Article  MathSciNet  Google Scholar 

  3. H. W. Lord and Y. A. Shulman, “Generalized dynamical theory of thermoelasticity,” J. Mech. Phys. Solids, 15, 299–309 (1967).

    Article  MATH  Google Scholar 

  4. A. E. Green and K. A. Lindsay, “Thermoelasticity,” J. Elasticity, 2, 1–7 (1972).

    Article  MATH  Google Scholar 

  5. A. E. Green and P.M. Naghdi, “A re-examination of the basic postulate of thermo-mechanics,” Proc. Roy. Soc. London, 432, 171–194 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  6. A. E. Green and P.M. Naghdi, “Thermoelasticity without energy dissipation,” J. Elasticity, 31, 189–208 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  7. A. E. Green and P.M. Naghdi, “An unbounded heat wave in an elastic solid,” J. Thermal Stresses, 15, 253–264 (1992).

    Article  MathSciNet  Google Scholar 

  8. D. Y. Tzou, Macro–to Microscale Heat Transfer the Lagging Dehavior, DC: Taylor and Francis, Washington (1996).

  9. D. Y. Tzou, “An unified field approach for heat conduction from macro to micro scales,” ASME J. Heat Trans., 117, 8–16 (1995).

    Article  Google Scholar 

  10. D. S. Chandrasekharaiah, “Hyperbolic thermoelasticity: A review of recent literature,” Appl. Mech. Rev., 51, 8–16 (1998).

    Article  Google Scholar 

  11. D. Y. Tzou, “Experimental support for the lagging behavior in heat propagation,” J. Thermophys. Heat Trans., 9, 686–693 (1995).

    Article  Google Scholar 

  12. R. Quintanilla and R. Racke, “A note on stability in dual-phase-lag heat conduction,” Int. J. Heat Mass Transfer, 49, 1209–1213 (2006).

    Article  MATH  Google Scholar 

  13. C. O. Horgan and R. Quintanilla, “Spatial behaviour of solutions of the dual-phase-lag heat equation,” Math. Methods Appl. Sci., 28, 43–57 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  14. S. K. Roychoudhuri, “One–dimensional thermoelastic waves in elastic half-space with dual–phase–lag effects,” J. of Mech. Materials Struc., 2, 489–503 (2007).

    Article  Google Scholar 

  15. R. Prasad, R. Kumar, and S. Mukhopadhyay, “Propagation of harmonic plane waves under thermoelasticity with dual–phase–lags,” Int. J. Eng. Sci., 48, 2028–2043 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  16. R. Quintanilla, “A well-posed problem for the three-dual-phase-lag heat conduction,” J. Therm. Stresses, 32, 1270–1278 (2009).

    Article  Google Scholar 

  17. R. Quintanilla and P. M. Jordan, “A note on the two temperature theory with dual-phase-lag delay some exact solutions,” Mech. Res. Commun., 36, 796–803 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  18. S. K. Roychoudhuri, “On a thermoelastic three–phase–lag model,” J. Thermal Stresses, 30, 231–238 (2007).

    Article  Google Scholar 

  19. A. E. Abouelregal, “A problem of a semi–infinite medium subjected to exponential heating using a dual–phase–lag thermoelastic model,” Appl. Math., 2, 619–624 (2011).

    Article  MathSciNet  Google Scholar 

  20. A. Kar and M. Kanoria, “Analysis of thermoelastic response in a fiber reinforced thin annular disc with three–phase–lag effect,” Europ. J. Pure Appl. Math., 4, 304–321 (2011).

    MathSciNet  MATH  Google Scholar 

  21. N. Sarkar and A. Lahiri, “A three-dimensional thermoelastic problem for a half-space without energy dissipation,” Int. J. Eng. Sci., 51, 310–325 (2012).

    Article  MathSciNet  Google Scholar 

  22. A. Lahiri, B. Das, and B. Datta, “Eigenvalue value approach to study the effect of rotation in three dimensional problem of generalized thermoelasticity,” Int. J. Appl. Mech. Eng., 15, 99–120 (2010).

    Google Scholar 

  23. N. C. Das, A. Lahiri, and S. Sarkar, “Eigenvalue value approach to three dimensional coupled thermoelasticity in a rotating transversly isotropic medium,” Tamsui Oxford J. Math. Sci., 25, 237–257 (2009).

    MathSciNet  MATH  Google Scholar 

  24. M. A. Ezzat and H. M. Youssef, “Theree-dimensional thermal shoch problem of generalized thermoelastic half-space,” Appl. Math. Modell., 34, 3608-3622 (2010).

    Article  MATH  Google Scholar 

  25. N. C. Das and P. C. Bhakata, “Eigenfunction expansion method to the solution of simultaneous equations and its application in mechanics,” Mech. Res. Cumm., 12, 19–29 (1985).

    Article  MathSciNet  Google Scholar 

  26. N. Sarkar and A. Lahiri, “The effect of gravity field on the plane waves in a fiber-reinforced two-temperature magneto-thermoelastic medium under Lord-Shulman theory,” J. Thermal Stresess, 36, 895–914 (2013).

    Article  Google Scholar 

  27. N. Sarkar, “Analysis of magneto-thermoelastic response in a fiber-reinforced elastic solid due to hydrostatic initial stress and gravity field,” J. Thermal Stresses, 37, 1–18 (2014).

    Article  Google Scholar 

  28. M. I. A. Othman and B. Singh, “The effect of rotation on generalized micropolar thermoelasticity for a half-space under five theories,” Int. J. Solids Struct., 44, 2748-2762 (2007).

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Sarkar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarkar, N. Temperature Dependence of the Elastic Modulus in Three-Dimensional Generalized Thermoelasticity with Dual-Phase-Lag Effects. Comput Math Model 28, 208–227 (2017). https://doi.org/10.1007/s10598-017-9358-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10598-017-9358-1

Keywords

Navigation