Skip to main content
Log in

A comprehensive survey on signal processing and machine learning techniques for non-invasive fetal ECG extraction

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Despite the rapid growth in the area of adult ECG signal processing and monitoring systems, the morphological analysis of fetal ECG signals lags farther behind and demands much attention. Non-invasive fetal Electrocardiography is the safest approach for monitoring the fetus health condition by processing the abdominal ECG (AECG) signals acquired by placing electrodes on the mother’s abdomen. The primary challenge associated with this method is the very poor SNR of the signal recorded because of dominant maternal ECG and other interferences contained in the AECG signal. This paper aims to provide an extensive review of the existing state of art techniques for extracting the fetal ECG signal from the AECG signals. We present details on methods available in modeling the fetal ECG, challenges associated with electrode placements, morphological analysis of extracted fetal ECG, and evaluation metrics for measuring the performance of extraction techniques. This paper provides the researchers with a detailed understanding of the problem of interest and helps in addressing future directions for processing the abdominal ECG signals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Abel JD, Krupa D, Samiappan R, Kumar, Pravin Kumar S (2019) Multiple sub-filter adaptive noise canceller for fetal ECG extraction. Procedia Comput Sci 165:182–188. https://doi.org/10.1016/j.procs.2020.01.093

    Article  Google Scholar 

  2. Adimoolam M, Karthi Govindharaju A, John S, Mohan AA, Ciano T (2021) A hybrid learning approach for the stage-wise classification and prediction of COVID-19 X-ray images. EXPERT Syst. https://doi.org/10.1111/exsy.12884

    Article  Google Scholar 

  3. Akhavan-Amjadi M (2020) Fetal electrocardiogram modeling using hybrid evolutionary firefly algorithm and extreme learning machine. Multidimension Syst Signal Process 31(1):117–133. https://doi.org/10.1007/s11045-019-00653-8

    Article  MATH  Google Scholar 

  4. An ECG, Andreotti J, Zaunseder F (2014) Model for simulating maternal-foetal activity mixtures on abdominal ECG recordings/Behar. Physiol Meas 35(8):1537–1550

    Article  Google Scholar 

  5. Andreotti F, Riedl M, Himmelsbach T, Wedekind D, Wessel N, Stepan H, … Zaunseder S (2014) Robust fetal ECG extraction and detection from abdominal leads. Physiol Meas 35(8):1551. https://doi.org/10.1088/0967-3334/35/8/1551

  6. Andreotti F, Behar J, Zaunseder S, Oster J, Clifford GD (2016) An open-source framework for stress-testing non-invasive foetal ECG extraction algorithms. Physiol Meas 37(5):627. https://doi.org/10.1088/0967-3334/37/5/627

    Article  Google Scholar 

  7. Anisha M, Kumar SS, Nithila EE, Benisha M (2021) Detection of fetal cardiac anomaly from composite abdominal electrocardiogram. Biomed Signal Process Control 65:102308. https://doi.org/10.1016/jbspc2020102308

    Article  Google Scholar 

  8. Assaleh K (2006) Extraction of fetal electrocardiogram using adaptive neuro-fuzzy inference systems. IEEE Trans Biomed Eng 54(1):59–68. https://doi.org/10.1109/TBME.2006.883728

    Article  Google Scholar 

  9. Behar J, Johnson A, Clifford GD, Oster J (2014) A comparison of single channel fetal ECG extraction methods. Ann Biomed Eng 42(6):1340–1353. https://doi.org/10.1007/s10439-014-0993-9

    Article  Google Scholar 

  10. Behar J, Andreotti F, Zaunseder S, Oster J, Clifford GD (2016) A practical guide to non-invasive foetal electrocardiogram extraction and analysis. Physiol Meas 37(5):R1. https://doi.org/10.1088/0967-3334/37/5/R1

    Article  Google Scholar 

  11. Behar JA, Bonnemains L, Shulgin V, Oster J, Ostras O, Lakhno I (2019) Noninvasive fetal electrocardiography for the detection of fetal arrhythmias. Prenatal Diagn 39(3):178–187. https://doi.org/10.1002/pd.5412

    Article  Google Scholar 

  12. Behar J (2016) Extraction of clinical information from the non-invasive fetal electrocardiogram. arXiv preprint arXiv:1606.01093

  13. Bhutta ZA, Yakoob MY, Lawn JE, Rizvi A, Friberg IK, Weissman E, Lancet’s Stillbirths Series steering committee, (2011) Stillbirths: what difference can we make and at what cost? Lancet 377(9776):1523–1538. https://doi.org/10.1016/S0140-6736(10)62269-6

    Article  Google Scholar 

  14. Blaas HG, Eik-Nes SH, Kiserud T, Hellevik LR (1995) Early development of the abdominal wall, stomach and heart from 7 to 12 weeks of gestation: a longitudinal ultrasound study. Ultrasound Obstet Gynecol 6(4):240–249. https://doi.org/10.1046/j.1469-0705.1995.06040240.x

    Article  Google Scholar 

  15. Callaerts D (1989) Signal separation methods based on singular value decomposition and their application to the real-time extraction of the fetal electrocardiogram from cutaneous recordings. Ph.D. Thesis K.U. Leuven

  16. Camps G, Martinez M, Soria E (2001) Fetal ECG extraction using an FIR neural network. In Computers in Cardiology, vol 28 (Cat. No. 01CH37287). IEEE, pp 249–252

  17. Camps-Valls G, Martínez-Sober M, Soria-Olivas E, Magdalena-Benedito R, Calpe-Maravilla J, Guerrero-Martínez J (2004) Foetal ECG recovery using dynamic neural networks. Artif Intell Med 31(3):197–209. https://doi.org/10.1016/j.artmed.2004.03.005

    Article  Google Scholar 

  18. Castillo E, Morales DP, Botella G, García A, Parrilla L, Palma AJ (2013) Efficient wavelet-based ECG processing for single-lead FHR extraction. Digit Signal Process 23(6):1897–1909. https://doi.org/10.1016/j.dsp.2013.07.010

    Article  Google Scholar 

  19. De Lathauwer L, De Moor B, Vandewalle J (1995) Fetal electrocardiogram extraction by source subspace separation. In: IEEE SP/Athos Workshop on Higher-Order Statistics, p 134

  20. De Moor B, De Gersem P, De Schutter B, Favoreel W (1997) DAISY: A database for identification of systems. J A 38:4–5

    Google Scholar 

  21. Dessì A, Pani D, Raffo L (2014) An advanced algorithm for fetal heart rate estimation from non-invasive low electrode density recordings. Physiol Meas 35(8). https://doi.org/10.1088/0967-3334/35/8/1621

  22. Fatemi M, Sameni R (2017) An online subspace denoising algorithm for maternal ECG removal from fetal ECG signals. Iran J Sci Technol Trans Electr Eng 41(1):65–79. https://doi.org/10.1007/s40998-017-0018-4

    Article  Google Scholar 

  23. Favret AG (1968) Computer matched filter location of fetal R-waves. Med Biol Eng 6(5):467. https://doi.org/10.1007/BF02474285

    Article  Google Scholar 

  24. Goldberger AL, Amaral LA, Glass L, Hausdorff JM, Ivanov PC, Mark RG, … Stanley HE (2000) PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation 101(23):e215-e220

  25. Goodyer AV, Geiger AJ, Monroe WM (1942) Clinical fetal electrocardiography. Yale J Biol Med 15(1):1

    Google Scholar 

  26. Gupta P, Sharma KK, Joshi SD (2016) Fetal heart rate extraction from abdominal electrocardiograms through multivariate empirical mode decomposition. Comput Biol Med 68:121–136. https://doi.org/10.1016/j.compbiomed.2015.11.007

    Article  Google Scholar 

  27. Gupta V, Jain N, Katariya P, Kumar A, Mohan S, Ferrara M (2021) An emotion care model using multimodal textual analysis on COVID-19. Chaos Soliton Fract 144:110708. https://doi.org/10.1016/j.chaos.2021.110708

    Article  Google Scholar 

  28. Gurve D, Krishnan S (2019) Separation of Fetal-ECG from single-channel abdominal ECG using activation scaled non-negative matrix factorization. IEEE J Biomed Health Inf 24(3):669–680. https://doi.org/10.1109/JBHI.2019.2920356

    Article  Google Scholar 

  29. Haghpanahi M, Borkholder DA (2013) Fetal ECG extraction from abdominal recordings using array signal processing. Computing in Cardiology. IEEE, pp 173–176

  30. Hasan MA, Reaz MBI, Ibrahimy MI, Hussain MS, Uddin J (2009) Detection and processing techniques of FECG signal for fetal monitoring. Biol Proced Online 11(1):263. https://doi.org/10.1007/s12575-009-9006-z

    Article  Google Scholar 

  31. Hasan MA, Ibrahimy MI, Reaz MBI (2009) Fetal ECG extraction from maternal abdominal ECG using neural network. J Softw Eng Appl 2(05):330. https://doi.org/10.4236/jsea.2009.25043

    Article  Google Scholar 

  32. Hon EH (1960) The instrumentation of fetal heart rate and fetal electrocardiography. I. A fetal heart monitor. Conn Med 24:289–293

    Google Scholar 

  33. Huque ASA, Ahmed KI, Mukit MA, Mostafa R (2019) HMM-based supervised machine learning framework for the detection of fECG RR peak locations. IRBM 40(3):157–166. https://doi.org/10.1016/j.irbm.2019.04.004

    Article  Google Scholar 

  34. Jafari MG, Chambers JA (2005) Fetal electrocardiogram extraction by sequential source separation in the wavelet domain. IEEE Trans Biomed Eng 52(3):390–400. https://doi.org/10.1109/TBME.2004.842958

    Article  Google Scholar 

  35. Jamshidian-Tehrani F, Sameni R, Jutten C (2019) Temporally nonstationary component analysis; application to noninvasive fetal electrocardiogram extraction. IEEE Trans Biomed Eng 67(5):1377–1386. https://doi.org/10.1109/TBME.2019.2936943

    Article  Google Scholar 

  36. Jaros R, Martinek R, Kahankova R, Koziorek J (2019) Novel hybrid extraction systems for fetal heart rate variability monitoring based on non-invasive fetal electrocardiogram. IEEE Access 7:131758–131784. https://doi.org/10.1109/ACCESS.2019.2933717

    Article  Google Scholar 

  37. Jezewski J, Matonia A, Kupka T, Roj D, Czabanski R (2012) Determination of fetal heart rate from abdominal signals: evaluation of beat-to-beat accuracy in relation to the direct fetal electrocardiogram. Biomed Eng/Biomedizinische Technik 57(5):383–394. https://doi.org/10.1515/bmt-2011-0130

    Article  Google Scholar 

  38. John RG, Ramachandran KI (2019) Extraction of foetal ECG from abdominal ECG by nonlinear transformation and estimations. Comput Methods Programs Biomed 175:193–204. https://doi.org/10.1016/j.cmpb.2019.04.022

    Article  Google Scholar 

  39. Karvounis EC, Tsipouras MG, Fotiadis DI (2009) Detection of fetal heart rate through 3-D phase space analysis from multivariate abdominal recordings. IEEE Trans Biomed Eng 56(5):1394–1406. https://doi.org/10.1109/TBME.2009.2014691

    Article  Google Scholar 

  40. Krupa AJ, Deva S, Dhanalakshmi, Kumar R (2021) An improved parallel sub-filter adaptive noise canceler for the extraction of fetal ECG. Biomedical Engineering/Biomedizinische Technik 66(5):503–514. https://doi.org/10.1515/bmt-2020-0313

    Article  Google Scholar 

  41. Krupa AJ, Deva S, Dhanalakshmi NL, Sanjana N, Manivannan R, Kumar, Tripathy S (2021) Fetal heart rate estimation using fractional Fourier transform and wavelet analysis. Biocybern Biomed Eng 41(4):1533–1547. https://doi.org/10.1016/j.bbe.2021.09.006

    Article  Google Scholar 

  42. Krupa AJ, Deva S, Dhanalakshmi, Kumar R (2022) "Joint time-frequency analysis and non-linear estimation for fetal ECG extraction" Biomed Signal Process Control 75:103569. https://doi.org/10.1016/j.bspc.2022.103569

    Article  Google Scholar 

  43. Kulathilake KA, Abdullah NA, Sabri AQM, Lai KW (2021) A review on deep learning approaches for low-dose computed tomography restoration. Complex Intell Syst 1–33. https://doi.org/10.1007/s40747-021-00405-x

  44. Li Y, Yi Z (2008) An algorithm for extracting fetal electrocardiogram. Neurocomputing 71(7–9):1538–1542. https://doi.org/10.1016/j.neucom.2007.05.001

    Article  Google Scholar 

  45. Li R, Frasch MG, Wu HT (2017) Efficient fetal-maternal ECG signal separation from two channel maternal abdominal ECG via diffusion-based channel selection. Front Physiol 8:277. https://doi.org/10.3389/fphys201700277

    Article  Google Scholar 

  46. Lindsley DB (1942) Heart and brain potentials of human fetuses in utero. Am J Psychol 55(3):412–416. https://doi.org/10.2307/1422698

    Article  Google Scholar 

  47. Lipponen JA, Tarvainen MP (2014) Principal component model for maternal ECG extraction in fetal QRS detection. Physiol Meas 35(8):1637. https://doi.org/10.1088/0967-3334/35/8/1637

    Article  Google Scholar 

  48. Liu C, Li P, Di Maria C, Zhao L, Zhang H, Chen Z (2014) A multi-step method with signal quality assessment and fine-tuning procedure to locate maternal and fetal QRS complexes from abdominal ECG recordings. Physiol Meas 35(8):1665. https://doi.org/10.1088/0967-3334/35/8/1665

    Article  Google Scholar 

  49. Ma Y, Xiao Y, Wei G, Sun J (2014) Fetal ECG extraction using adaptive functional link artificial neural network. In: Signal and Information Processing Association Annual Summit and Conference (APSIPA), 2014 Asia-Pacific. IEEE, pp 1–4

  50. Ma Y, Xiao Y, Wei G, Sun J (2015) A multichannel nonlinear adaptive noise canceller based on generalized FLANN for fetal ECG extraction. Meas Sci Technol 27(1):015703. https://doi.org/10.1088/0957-0233/27/1/015703

    Article  Google Scholar 

  51. Ma Y, Xiao Y, Wei G, Sun J (2017) Foetal ECG extraction using non-linear adaptive noise canceller with multiple primary channels. IET Signal Proc 12(2):219–227. https://doi.org/10.1049/iet-spr.2016.0605

    Article  Google Scholar 

  52. Martens SM, Rabotti C, Mischi M, Sluijter RJ (2007) A robust fetal ECG detection method for abdominal recordings. Physiol Meas 28(4). https://doi.org/10.1088/0967-3334/28/4/004

  53. Matonia A, Jezewski J, Kupka T, Jezewski M, Horoba K, Wrobel J, Kahankowa R (2020) Fetal electrocardiograms, direct and abdominal with reference heartbeat annotations. Sci Data 7(1):1–14. https://doi.org/10.1038/s41597-020-0538-z

    Article  Google Scholar 

  54. Najafabadi FS, Zahedi E, Ali MAM (2006) Fetal heart rate monitoring based on independent component analysis. Comput Biol Med 36(3):241–252. https://doi.org/10.1016/j.compbiomed.2004.11.004

    Article  Google Scholar 

  55. NHS (2014) Congenital heart disease. https://www.nhs.uk/conditions/Congenital-heart-disease/Pages/Introduction.aspx. Accessed 07 Sept 2021

  56. Niknazar M, Rivet B, Jutten C (2012) Fetal ECG extraction by extended state Kalman filtering based on single-channel recordings. IEEE Trans Biomed Eng 60(5):1345–1352. https://doi.org/10.1109/TBME.2012.2234456

    Article  Google Scholar 

  57. Nizar MHA, Khalil A, Chan CK, Utama NP, Lai KW (2019) Pilot study on machine learning for aortic valve detection in echocardiography images. J Med Imaging Health Inf 9(1):9–14. https://doi.org/10.1166/jmihi.2019.2563

    Article  Google Scholar 

  58. Panigrahy D, Sahu PK (2017) Extraction of fetal ECG signal by an improved method using extended Kalman smoother framework from single channel abdominal ECG signal. Australas Phys Eng Sci Med 40(1):191–207. https://doi.org/10.1007/s13246-017-0527-5

    Article  Google Scholar 

  59. Peters M, Crowe J, Piéri JF, Quartero H, Hayes-Gill B, James D, Shakespeare S (2001) Monitoring the fetal heart non-invasively: a review of methods. J Perinat Med 29(5):408–416. https://doi.org/10.1515/JPM.2001.057

    Article  Google Scholar 

  60. Praneeth CN, Abel JDK, Samiappan D, Kumar R, Kumar SP, Nitin PV (2020) A comparison on variants of LMSused. In: FIR adaptive noise cancellers for fetal ECG extraction. Biomed Eng: Appl Basis Commun 32(04). https://doi.org/10.4015/S101623722050026X

  61. Reaz MBI, Wei LS (2004) Adaptive linear neural network filter for fetal ECG extraction. In: International Conference on Intelligent Sensing and Information Processing. Proceedings of. IEEE, pp 321–324

  62. Redif S (2016) Fetal electrocardiogram estimation using polynomial eigenvalue decomposition. Turkish J Electr Eng Comput Sci 24(4):2483–2497

    Article  Google Scholar 

  63. Rreddy R, Natarajan S, Prakash V, Vittala PR, Arun U, Sahoo S (2021) External cardiac loop recorders: functionalities, diagnostic efficacy, challenges and opportunities. IEEE Rev Biomed Eng. https://doi.org/10.1109/RBME.2021.3055219

    Article  Google Scholar 

  64. Sameni R (2008) Extraction of fetal cardiac signals from an array of maternal abdominal recordings (Doctoral dissertation, Institut National Polytechnique de Grenoble-INPG; Sharif University of Technology (SUT))

  65. Sameni R, Clifford GD (2010) A review of fetal ECG signal processing; issues and promising directions. Open Pacing Electrophysiol Ther J 3:4. https://doi.org/10.2174/1876536X01003010004

    Article  Google Scholar 

  66. Samiappan D, Chakrapani V (2016) Classification of carotid artery abnormalities in ultrasound images using an artificial neural classifier. Int Arab J Inf Technol 13:756–762

    Google Scholar 

  67. Samiappan, Dhanalakshmi S, Latha T, Rama Rao D, Verma, Sriharsha CSA (2020) Enhancing Machine Learning Aptitude Using Significant Cluster Identification for Augmented Image Refining. Int J Pattern recognit Artif Intell 34(09):2051009. https://doi.org/10.1142/S021800142051009X

    Article  Google Scholar 

  68. Sana F, Ballal T, Shadaydeh M, Hoteit I, Al-Naffouri TY (2019) Fetal ECG extraction exploiting joint sparse supports in a dual dictionary framework. Biomed Signal Process Control 48:46–60. https://doi.org/10.1016/j.bspc.2018.08.023

    Article  Google Scholar 

  69. Sato M, Kimura Y, Chida S, Ito T, Katayama N, Okamura K, Nakao M (2006) A novel extraction method of fetal electrocardiogram from the composite abdominal signal. IEEE Trans Biomed Eng 54(1):49–58. https://doi.org/10.1109/TBME.2006.883791

    Article  Google Scholar 

  70. Sevim Y, Atasoy A (2011) Performance evaluation of nonparametric ICA algorithm for fetal ECG extraction. Turkish J Electr Eng Comput Sci 19(4):657–666

    Google Scholar 

  71. Shadaydeh M, Xiao Y, Ward RK (2008) Extraction of fetal ECG using adaptive Volterra filters. In: 2008 16th European Signal Processing Conference. IEEE, pp 1–5

  72. Silva I, Behar J, Sameni R, Zhu T, Oster J, Clifford GD, Moody GB (2013) Noninvasive fetal ECG: the PhysioNet/computing in cardiology challenge 2013. Computing inCardiology. IEEE, pp 149–152

  73. Speedie J, Lyus R, Robson SC(2014) Fetal anomaly. Abortion Care, 153–162

  74. Stenberg K, Axelson H, Sheehan P, Anderson I, Gülmezoglu AM, Temmerman M, Bustreo F (2014) Advancing social and economic development by investing in women’s and children’s health: a new Global Investment Framework. The Lancet 383(9925):1333–1354. https://doi.org/10.1016/S0140-6736(13)62231-X

    Article  Google Scholar 

  75. Su L, Wu HT (2017) Extract fetal ECG from single-lead abdominal ECG by de-shape short time Fourier transform and nonlocal median. Front Appl Math Stat 3. https://doi.org/10.3389/fams.2017.00002

  76. Suganthy M, Manjula S (2019) Enhancement of SNR in fetal ECG signal extraction using combined SWT and WLSR in parallel EKF. Clust Comput 22(2):3875–3881. https://doi.org/10.1007/s10586-018-2477-4

    Article  Google Scholar 

  77. Sulas E, Urru M, Tumbarello R, Raffo L, Sameni R, Pani D (2021) A non-invasive multimodal foetal ECG–Doppler dataset for antenatal cardiology research. Sci Data 8(1):1–19. https://doi.org/10.1038/s41597-021-00811-3

    Article  Google Scholar 

  78. Sureau C, Trocellier R (1963) Etude de quelques problemes techniques en electrocardiographie foetale. Med Electron Biol Engng 1(2):181–188. https://doi.org/10.1007/BF02475886

    Article  Google Scholar 

  79. Sweha A, Hacker TW, Nuovo J (1999) Interpretation of the electronic fetal heart rate during labor. Am Fam Physician 59(9):2487

    Google Scholar 

  80. Symonds EM, Chang A, Sahota D (2001) Fetal electrocardiography. World Scientific, Singapore

  81. Taha LY, Abdel-Raheem E (2020) Fetal ECG extraction using input-mode and output-mode adaptive filters with blind source separation. Can J Electr Comput Eng 43(4):295–304. https://doi.org/10.1109/CJECE.2020.2984602

    Article  Google Scholar 

  82. Ungureanu GM, Bergmans JW, Oei SG, Ungureanu A, Wolf W (2009) The event synchronous canceller algorithm removes maternal ECG from abdominal signals without affecting the fetal ECG. Comput Biol Med 39(6):562–567. https://doi.org/10.1016/j.compbiomed.2009.03.013

    Article  Google Scholar 

  83. van Oosterom A (1986) Spatial filtering of the fetal electrocardiogram. J Perinatal Med 14(6):411–419. https://doi.org/10.1515/jpme.1986.14.6.411

    Article  Google Scholar 

  84. Varanini M, Tartarisco G, Billeci L, Macerata A, Pioggia G, Balocchi R (2014) An efficient unsupervised fetal QRS complex detection from abdominal maternal ECG. Physiol Meas 35(8):1607. https://doi.org/10.1088/0967-3334/35/8/1607

    Article  Google Scholar 

  85. Varanini M, Tartarisco G, Balocchi R, Macerata A, Pioggia G, Billeci L (2017) A new method for QRS complex detection in multichannel ECG: Application to self-monitoring of fetal health. Comput Biol Med 85:125–134. https://doi.org/10.1016/j.compbiomed.2016.04.008

    Article  Google Scholar 

  86. Verdurmen KM, Lempersz C, Vullings R, Schroer C, Delhaas T, van Laar JO, Oei SG (2016) Normal ranges for fetal electrocardiogram values for the healthy fetus of 18–24 weeks of gestation: a prospective cohort study. BMC Pregnancy Childbirth 16(1):1–7. https://doi.org/10.1186/s12884-016-1021-x

    Article  Google Scholar 

  87. Vintzileos AM, Nochimson DJ, Guzman ER, Knuppel RA, Lake M, Schifrin BS (1995) Intrapartum electronic fetal heart rate monitoring versus intermittent auscultation: a meta-analysis. Obstet Gynecol 85(1):149–155. https://doi.org/10.1016/0029-7844(94)00320-D

    Article  Google Scholar 

  88. Vullings R, Mischi M (2013) Probabilistic source separation for robust fetal electrocardiography. Comput Math Methods Med. https://doi.org/10.1155/2013/109756

  89. Vullings R, Peters CHL, Hermans MJM, Wijn PFF, Oei SG, Bergmans JWM (2010) A robust physiology-based source separation method for QRS detection in low amplitude fetal ECG recordings. Physiol Meas 31(7):935. https://doi.org/10.1088/0967-3334/31/7/005

    Article  Google Scholar 

  90. Warmerdam GJ, Vullings R, Schmitt L, Van Laar JO, Bergmans JW (2018) Hierarchical probabilistic framework for fetal R-peak detection, using ECG waveform and heart rate information. IEEE Trans Signal Process 66(16):4388–4397. https://doi.org/10.1109/TSP.2018.2853144

    Article  MathSciNet  MATH  Google Scholar 

  91. Wei Z, Xiaolong L, Jin Z, Xueyun W, Hongxing L (2018) Foetal heart rate estimation by empirical mode decomposition and MUSIC spectrum. Biomed Signal Process Control 42:287–296. https://doi.org/10.1016/j.bspc.2018.01.024

    Article  Google Scholar 

  92. Widrow B, Glover JR, McCool JM, Kaunitz J, Williams CS, Hearn RH, … Goodlin RC (1975) Adaptive noise cancelling: Principles and applications. Proc IEEE 63(12):1692-1716. https://doi.org/10.1109/PROC.1975.10036

  93. Zarzoso V, Nandi AK (2001) Noninvasive fetal electrocardiogram extraction: blind separation versus adaptive noise cancellation. IEEE Trans Biomed Eng 48(1):12-18. https://doi.org/10.1109/10.900244

  94. Zaunseder, S., Andreotti, F., Cruz, M., Stepan, H., Schmieder, C., Malberg, H., … Wessel, N. (2012). Fetal QRS detection by means of Kalman filtering and using the Event Synchronous Canceller. In: 7th Int Workshop on Biosig Interpretation Como

  95. Zhang Y, Yu S (2020) Single-lead noninvasive fetal ECG extraction by means of combining clustering and principal components analysis. Med Biol Eng Comput 58(2):419–432. https://doi.org/10.1007/s11517-019-02087-7

    Article  Google Scholar 

  96. Zheng W, Liu H, He A, Ning X, Cheng J (2010) Single-lead fetal electrocardiogram estimation by means of combining R-peak detection, resampling and comb filter. Med Eng Phys 32(7):708–719. https://doi.org/10.1016/j.medengphy.2010.04.012

    Article  Google Scholar 

  97. Zhong W, Liao L, Guo X, Wang G (2018) A deep learning approach for fetal QRS complex detection. Physiol Meas 39(4). https://doi.org/10.1088/1361-6579/aab297

  98. Zhong W, Liao L, Guo X, Wang G (2019) Fetal electrocardiography extraction with residual convolutional encoder–decoder networks. Australas Phys Eng Sci Med 42(4):1081–1089. https://doi.org/10.1007/s13246-019-00805-x

    Article  Google Scholar 

  99. Zhong W, Guo X, Wang G (2020) Maternal ECG removal using short time Fourier transform and convolutional auto-encoder. Int J Data Min Bioinform 23(2):160–175. https://doi.org/10.1504/IJDMB.2020.107381

    Article  Google Scholar 

Download references

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samiappan Dhanalakshmi.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abel, J.D.K., Dhanalakshmi, S. & Kumar, R. A comprehensive survey on signal processing and machine learning techniques for non-invasive fetal ECG extraction. Multimed Tools Appl 82, 1373–1400 (2023). https://doi.org/10.1007/s11042-022-13391-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-022-13391-0

Keywords

Navigation