Skip to main content

Advertisement

Log in

Fetal electrocardiography extraction with residual convolutional encoder–decoder networks

  • Scientific Paper
  • Published:
Australasian Physical & Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

In the context of fetal monitoring, non-invasive fetal electrocardiography is an alternative approach to the traditional Doppler ultrasound technique. However, separating the fetal electrocardiography (FECG) component from the abdominal electrocardiography (AECG) remains a challenging task. This is mainly due to the interference from maternal electrocardiography, which has larger amplitude and overlaps with the FECG in both temporal and frequency domains. The main objective is to present a novel approach to FECG extraction by using a deep learning strategy from single-channel AECG recording. A residual convolutional encoder–decoder network (RCED-Net) is developed for this task of FECG extraction. The single-channel AECG recording is the input to the RCED-Net. And the RCED-Net extracts the feature of AECG and directly outputs the estimate of FECG component in the AECG recording. The AECG recordings from two different databases are collected to illustrate the efficiency of the proposed method. And the achieved results show that the proposed technique exhibits the best performance when compared to the existing methods in the literature. This work is a proof of concept that the proposed method could effectively extract the FECG component from AECG recordings. The focus on single-channel FECG extraction technique contributes to the commercial applications for long-term fetal monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Adkins RM, Krushkal J, Somes G, Fain J, Morrison J, Klauser C, Magann EF (2009) Extensive parent-of-origin genetic effects on fetal growth. BMC Bioinform 10(7):A13. https://doi.org/10.1186/1471-2105-10-S7-A13

    Article  Google Scholar 

  2. Andreotti F, Behar J, Zaunseder S, Oster J, Clifford GD (2016) An open-source framework for stress-testing non-invasive foetal ecg extraction algorithms. Physiol Meas 37(5):627

    Article  PubMed  Google Scholar 

  3. Assaleh K (2007) Extraction of fetal electrocardiogram using adaptive neuro-fuzzy inference systems. IEEE Trans Biomed Eng 54(1):59–68

    Article  PubMed  Google Scholar 

  4. Begg R, Kamruzzaman J (2006) Neural networks for detection and classification of walking pattern changes due to ageing. Australas Phys Eng Sci Med 29(2):188. https://doi.org/10.1007/BF03178892

    Article  CAS  PubMed  Google Scholar 

  5. Behar J, Andreotti F, Zaunseder S, Oster J, D Clifford G (2016) A practical guide to non-invasive foetal electrocardiogram extraction and analysis. Physiol Meas 37(5):R1–R35. https://doi.org/10.1088/0967-3334/37/5/r1

    Article  PubMed  Google Scholar 

  6. Behar J, Johnson A, Clifford GD, Oster J (2014) A comparison of single channel fetal ecg extraction methods. Ann Biomed Eng 42(6):1340–1353

    Article  PubMed  Google Scholar 

  7. Behar J, Oster J, Clifford GD (2013) Non-invasive fecg extraction from a set of abdominal sensors. Comput Cardiol 2013:297–300

    Google Scholar 

  8. Bhutta Z, Yakoob M, E Lawn J, Rizvi A, Friberg I, Weissman E, Buchmann E, L Goldenberg R (2011) Stillbirths: what difference can we make and at what cost? Lancet 377:1523–1538

    Article  PubMed  Google Scholar 

  9. Castillo E, Morales DP, García A, Parrilla L, Ruiz VU, Álvarez Bermejo JA (2018) A clustering-based method for single-channel fetal heart rate monitoring. PLoS ONE 13(6):1–22. https://doi.org/10.1371/journal.pone.0199308

    Article  CAS  Google Scholar 

  10. Cerutti S, Baselli G, Civardi S, Ferrazzi E, Marconi A, Pagani M, Pardi G (2009) Variability analysis of fetal heart rate signals as obtained from abdominal electrocardiographic recordings. J Perinat Med 14(6):445–452. https://doi.org/10.1515/jpme.1986.14.6.445

    Article  Google Scholar 

  11. Chetham SM, Barker TM, Stafford W (2002) Neural networks in cardiac electrophysiological signal classification. Australas Phys Eng Sci Med 25(3):124. https://doi.org/10.1007/BF03178773

    Article  CAS  PubMed  Google Scholar 

  12. Clifford GD, Silva I, Behar J, Moody GB (2014) Non-invasive fetal ecg analysis. Physiol Meas 35(8):1521

    Article  PubMed  PubMed Central  Google Scholar 

  13. Dessì A, Pani D, Raffo L (2014) An advanced algorithm for fetal heart rate estimation from non-invasive low electrode density recordings. Physiol Meas 35(8):1621

    Article  PubMed  Google Scholar 

  14. Esteva A, Kuprel B, Novoa R, Ko J, M Swetter S, M Blau H, Thrun S (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542:115–118. https://doi.org/10.1038/nature21056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Goldberger A, Amaral L, Glass L, Hausdorff JM, Ivanov P, Mark R, Mietus J, Moody G, Peng CK, Stanley H (2000) Physiobank, physiotoolkit, and physionet: components of a new research resource for complex physiologic signals. Circulation 101(23):215–220. https://doi.org/10.1161/01.cir.101.23.e215

    Article  Google Scholar 

  16. Hasan M, Reaz M, Ibrahimy M, Hussain M, Uddin J (2009) Detection and processing techniques of fecg signal for fetal monitoring. Biol Proced Online 11(1):263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kanjilal PP, Palit S, Saha G (1997) Fetal ecg extraction from single-channel maternal ecg using singular value decomposition. IEEE Trans Biomed Eng 44(1):51–59

    Article  CAS  PubMed  Google Scholar 

  18. Kligfield P, Gettes LS, Bailey JJ, Childers R, Deal BJ, Hancock EW, van Herpen G, Kors JA, Macfarlane P, Mirvis DM, Pahlm O, Rautaharju P, Wagner GS (2007) Recommendations for the standardization and interpretation of the electrocardiogram. Circulation 115(10):1306–1324. https://doi.org/10.1161/circulationaha.106.180200

    Article  PubMed  Google Scholar 

  19. Lewis MJ (2003) Review of electromagnetic source investigations of the fetal heart. Med Eng Phys 25(10):801–810. https://doi.org/10.1016/S1350-4533(03)00121-8

    Article  PubMed  Google Scholar 

  20. Liu C, Li P, Di Maria C, Zhao L, Zhang H, Chen Z (2014) A multi-step method with signal quality assessment and fine-tuning procedure to locate maternal and fetal qrs complexes from abdominal ecg recordings. Physiol Meas 35:1665–1683

    Article  PubMed  Google Scholar 

  21. Najafabadi FS, Zahedi E, Mohd Ali MA (2006) Fetal heart rate monitoring based on independent component analysis. Comput Biol Med 36(3):241–252

    Article  PubMed  Google Scholar 

  22. Pan J, Tompkins WJ (1985) A real-time qrs detection algorithm. IEEE Trans Biomed Eng BME–32(3):230–236

    Article  Google Scholar 

  23. Sameni R, D Clifford G (2010) A review of fetal ecg signal processing issues and promising directions. Open Pacing Electrophysiol Ther J 3:4–20. https://doi.org/10.2174/1876536x01003010004

    Article  PubMed  PubMed Central  Google Scholar 

  24. Savalia S, Emamian V (2018) Cardiac arrhythmia classification by multi-layer perceptron and convolution neural networks. Bioengineering 5(2):35

    Article  PubMed Central  Google Scholar 

  25. Silva I, Behar J, Sameni R, Zhu T, Oster J, Clifford GD, Moody GB (2013) Noninvasive fetal ecg: the physionet/computing in cardiology challenge 2013. Comput Cardiol 2013:149–152

    Google Scholar 

  26. Sriraam N, Tamanna K, Narayan L, Khanum M, Raghu S, Hegde AS, Kumar AB (2018) Multichannel eeg based interictal seizures detection using teager energy with backpropagation neural network classifier. Australas Phys Eng Sci Med 41(4):1047–1055. https://doi.org/10.1007/s13246-018-0694-z

    Article  CAS  PubMed  Google Scholar 

  27. Suzanna M, Rabotti C, Mischi M, Sluijter RJ (2007) A robust fetal ecg detection method for abdominal recordings. Physiol Meas 28(4):373

    Article  Google Scholar 

  28. Vahidi A, Stefanopoulou A, Peng H (2005) Recursive least squares with forgetting for online estimation of vehicle mass and road grade: theory and experiments. Veh Syst Dyn 43(1):31–55. https://doi.org/10.1080/00423110412331290446

    Article  Google Scholar 

  29. Vullings R, Peters CHL, Sluijter RJ, Mischi M, Oei SG (2009) Dynamic segmentation and linear prediction for maternal ecg removal in antenatal abdominal recordings. Physiol Meas 30(3):291

    Article  CAS  PubMed  Google Scholar 

  30. Zarzoso V, Nandi AK (2001) Noninvasive fetal electrocardiogram extraction: blind separation versus adaptive noise cancellation. IEEE Trans Biomed Eng 48(1):12–18. https://doi.org/10.1109/10.900244

    Article  CAS  PubMed  Google Scholar 

  31. Zhong W, Liao L, Guo X, Wang G (2018) A deep learning approach for fetal QRS complex detection. Physiol Meas 39(4):045004

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Key Program of the National Social Science Fund of China with Grant No. 18ZDA308 and in part by the National Natural Science Foundation of China under Grant Nos. 61772574, 61375080, and U1811462.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoli Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants and animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, W., Liao, L., Guo, X. et al. Fetal electrocardiography extraction with residual convolutional encoder–decoder networks. Australas Phys Eng Sci Med 42, 1081–1089 (2019). https://doi.org/10.1007/s13246-019-00805-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13246-019-00805-x

Keywords

Navigation