Skip to main content
Log in

Conjugate Frobenius Manifold and Inversion Symmetry

  • Published:
Mathematical Physics, Analysis and Geometry Aims and scope Submit manuscript

Abstract

We give a conjugacy relation on certain type of Frobenius manifold structures using the theory of flat pencils of metrics. It leads to a geometric interpretation for the inversion symmetry of solutions to Witten–Dijkgraaf–Verlinde–Verlinde (WDVV) equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Non applicable.

References

  1. Al-Maamari, Z., Dinar, Y.: Frobenius manifolds on orbits spaces. Math. Phys. Anal. Geom. 25, 22 (2022)

    Article  MathSciNet  Google Scholar 

  2. Arsie, A., Lorenzoni, P.: Complex reflection groups, logarithmic connections and bi-flat F-manifolds. Lett. Math. Phys. 107, 1919–1961 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  3. Arsie, A., Lorenzoni, P., Mencattini, I., and Moroni, G.: A Dubrovin–Frobenius manifold structure of NLS type on the orbit space of \(B_n\). arXiv:2111.03964. (2021)

  4. Dinar, Y.: Frobenius manifolds from regular classical W-algebras. Adv. Math. 226(6), 5018–5040 (2011)

    Article  MathSciNet  Google Scholar 

  5. Dinar, Y.: Algebraic classical \(W\)-algebras and Frobenius manifolds. arXiv:1911.00271 (2019)

  6. Dinar, Y., Al-Maamari, Z.: Dicyclic groups and Frobenius manifolds. SQU J. Sci. 25(2), 107–111 (2020)

    Google Scholar 

  7. Dubrovin, B.: Geometry of \(2\)D Topological Field Theories, Integrable Systems and Quantum Groups, pp. 120–348. Springer, Berlin (1996)

    MATH  Google Scholar 

  8. Dubrovin, B.: Flat Pencils of Metrics and Frobenius Manifolds, Integrable Systems and Algebraic Geometry, pp. 47–72. World Scientific Publishing, River Edge (1998)

    MATH  Google Scholar 

  9. Dubrovin, B.: Differential geometry of the space of orbits of a Coxeter group. Surv. Diff. Geom. IV 4, 181–211 (1998)

    Article  MathSciNet  Google Scholar 

  10. Dubrovin, B.A., Novikov, S.P.: Poisson brackets of hydrodynamic type. Dokl. Akad. Nauk SSSR 279(2), 294–297 (1984). (Russian)

    ADS  MathSciNet  MATH  Google Scholar 

  11. Dubrovin, B., Zhang, Y.: Normal Forms of Hierarchies of Integrable PDEs, Frobenius Manifolds and Gromov-Witten Invariants. www.arxiv.orgmath/0108160

  12. Dubrovin, B., Liu, S.-Q., Zhang, Y.: Frobenius manifolds and central invariants for the Drinfeld–Sokolov Bihamiltonian structures. Adv. Math. 219(3), 780–837 (2008)

    Article  MathSciNet  Google Scholar 

  13. Dunin-Barkowski, P., Shadrin, S., Spitz, L.: Givental graphs and inversion symmetry. Lett. Math. Phys. 103(5), 533–557 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  14. Falqui, G., Lorenzoni, P.: Exact Poisson pencils, \(\tau \)-structures and topological hierarchies. Physics 241(23–24), 2178–2187 (2012)

    MathSciNet  MATH  Google Scholar 

  15. Hertling, C.: Frobenius manifolds and moduli spaces for singularities. Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge (2002)

    Book  Google Scholar 

  16. Humphreys, J.E.: Reflection Groups and Coxeter Groups. Cambridge University Press, Cambridge (1990)

    Book  Google Scholar 

  17. Liu, S.Q., Xu, D., Zhang, Y.: The inversion symmetry of the WDVV equations and tau functions. Physica D 241(23–24), 2168–2177 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  18. Morrison, E.K., Strachan, I.A.: Polynomial modular Frobenius manifolds. Physica D 241(23–24), 2145–2155 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  19. Saito, K.: On a linear structure of the quotient variety by a finite reflexion group. Publ. Res. Inst. Math. Sci. 29(4), 535–579 (1993)

    Article  MathSciNet  Google Scholar 

  20. Saito, K., Yano, T., Sekeguchi, J.: On a certain generator system of the ring of invariants of a finite reflection group. Commun. Algebra 8(4), 1–8 (1980)

    Article  MathSciNet  Google Scholar 

  21. Sergyeyev, A.: A simple way of making a Hamiltonian system into a bi-Hamiltonian one. Acta Applicandae Mathematica 83(1), 183–197 (2004)

    Article  MathSciNet  Google Scholar 

  22. Zuo, D.: Frobenius manifolds associated to \(B_l\) and \(D_l\). Revisited, International Mathematics Research Notices (2007)

Download references

Acknowledgements

The authors thank Paolo Lorenzoni for his time to read the first draft of this article and for his suggestion to generalize the results under more general hypothesis. The authors also thank anonymous reviewers whose comments/suggestions helped clarify and improve the article. In particular, directing us to the coordinates free condition (3.1) and to the potential used in Example 3.5.

Funding

This work was partially funded by the internal grant of Sultan Qaboos University (IG/SCI/DOMS/19/08).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yassir Dinar.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Communicated by Youjin Zhang.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Maamari, Z., Dinar, Y. Conjugate Frobenius Manifold and Inversion Symmetry. Math Phys Anal Geom 25, 23 (2022). https://doi.org/10.1007/s11040-022-09436-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11040-022-09436-3

Keywords

Mathematics Subject Classification

Navigation