Skip to main content
Log in

Frobenius Manifolds on Orbits Spaces

  • Published:
Mathematical Physics, Analysis and Geometry Aims and scope Submit manuscript

Abstract

The orbits space of an irreducible linear representation of a finite group is a variety whose coordinate ring is the ring of invariant polynomials. Boris Dubrovin proved that the orbits space of the standard reflection representation of an irreducible finite Coxeter group \({\mathcal {W}}\) acquires a natural polynomial Frobenius manifold structure. We apply Dubrovin’s method on various orbits spaces of linear representations of finite groups. We find some of them has non or several natural Frobenius manifold structures. On the other hand, these Frobenius manifold structures include rational and trivial structures which are not known to be related to the invariant theory of finite groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availibility

Non applicable.

References

  1. Al-Maamari, Z., Dinar, Y.: Inversion symmetry on Frobenius manifolds, arXiv:2106.08000 (2021)

  2. Derksen, H., Kemper, G.: Computational Invariant Theory. Springer, Berlin (2015)

    Book  Google Scholar 

  3. Dinar, Y., Al-Maamari, Z.: Dicyclic groups and Frobenius manifolds. SQU J. Sci. 25(2), 107–111 (2020)

    Google Scholar 

  4. Dubrovin, B.: Geometry of $2$D Topological Field Theories, Integrable Systems and Quantum Groups, pp. 120–348. Springer, Berlin, Heidelberg (1996)

    MATH  Google Scholar 

  5. Dubrovin, B.: Differential geometry of the space of orbits of a Coxeter group. Surv. Differ. Geom. IV: Integr. Syst. 4, 181–211 (1998a)

    Article  MathSciNet  Google Scholar 

  6. Dubrovin, B.: Flat Pencils of Metrics and Frobenius Manifolds, Integrable Systems and Algebraic Geometry, pp. 47–72. World Scientific Publishing, River Edge (1998b)

    MATH  Google Scholar 

  7. Dubrovin, B., Zhang, Y.: Extended affine Weyl groups and Frobenius manifolds. Compos. Math. 111, 167–219 (1998c)

    Article  MathSciNet  Google Scholar 

  8. Dubrovin, B.: On almost duality for Frobenius manifolds. Transl. Am. Math. Soc. Ser. 2(212), 75–132 (2004)

    MathSciNet  MATH  Google Scholar 

  9. Dubrovin, B., Strachan, I.A.B., Zhang, Y., Zuo, D.: Extended affine Weyl groups of BCD-type: their Frobenius manifolds and Landau–Ginzburg superpotentials. Adv. Math. 351, 897–946 (2019)

    Article  MathSciNet  Google Scholar 

  10. Fordy, A.P., Mokhov, O.I.: ON a special class of compatible Poisson structures of hydrodynamic type. Physica D: Nonlinear Phenom. 152, 475–490 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  11. Fulton, W., Harris, J.: Representation Theory: A First Course, vol. 129. Springer Science and Business Media, Berlin (2013)

    MATH  Google Scholar 

  12. Hertling, C.: Frobenius Manifolds and Moduli Spaces for Singularities, Cambridge Tracts in Mathematics, vol. 151. Cambridge University Press, Cambridge (2002)

    Book  Google Scholar 

  13. Humphreys, J.E.: Reflection Groups and Coxeter Groups, vol. 29. Cambridge University Press, Cambridge (1990)

    Book  Google Scholar 

  14. Leuschke, G.J., Wiegand, R.: Cohen–Macaulay Representations, Mathematical Surveys and Monographs, vol. 181. American Mathematical Society, Providence (2012)

    MATH  Google Scholar 

  15. Neusel, M.: Invariant Theory, vol. 36. American Mathematical Society, Providence (2006)

    MATH  Google Scholar 

  16. Orlik, P., Solomon, L.: The Hessian map in the invariant theory of reflection groups. Nagoya Math. J. 109, 1–21 (1988)

    Article  MathSciNet  Google Scholar 

  17. Saito, K.: On a linear structure of the quotient variety by a finite reflexion group. Publ. Res. Inst. Math. Sci. 29(4), 535–579 (1993)

    Article  MathSciNet  Google Scholar 

  18. Saito, K., Yano, T., Sekeguchi, J.: On a certain generator system of the ring of invariants of a finite reflection group. Commun. Algebra 8(4), 373–408 (1980)

    Article  MathSciNet  Google Scholar 

  19. Steinberg, B.: Representation Theory of Finite Groups: An Introductory Approach. Springer Science Business and Media, Berlin (2012)

    Book  Google Scholar 

  20. Watanabe, K.I., Rotillon, D.: Invariant subrings of ${\mathbb{C} } [X, Y, Z]$ which are complete intersections. Manuscripta Mathematica 39(2), 339–357 (1982)

    Article  MathSciNet  Google Scholar 

  21. Yau, S.T., Yau, S.S.T., Yu, Y.: Gorenstein Quotient Singularities in Dimension Three, vol. 505. American Mathematical Society, Providence (1993)

    MATH  Google Scholar 

  22. Zuo, D.: Frobenius Manifolds Associated to $B_l$ and $D_l$, Revisited. International Mathematics Research Notices (2007)

  23. Zuo, D.: Frobenius manifolds and a new class of extended affine Weyl groups ${\widetilde{W}}^{(k, k+1)} (A_l)$. Lett. Math. Phys. 110, 1903–1940 (2020)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors thank Robert Howett, Hans-Christian Herbig and Christopher Seaton for useful discussions. They very much appreciate the Magma program’s support team for their helpful cooperation.

Funding

This work was partially funded by the internal grant of Sultan Qaboos University (Grant No. IG/SCI/DOMS/19/08).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yassir Dinar.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Communicated by Youjin Zhang.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Maamari, Z., Dinar, Y. Frobenius Manifolds on Orbits Spaces. Math Phys Anal Geom 25, 22 (2022). https://doi.org/10.1007/s11040-022-09434-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11040-022-09434-5

Keywords

Mathematics Subject Classification

Navigation