Skip to main content
Log in

Complex reflection groups, logarithmic connections and bi-flat F-manifolds

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

We show that bi-flat F-manifolds can be interpreted as natural geometrical structures encoding the almost duality for Frobenius manifolds without metric. Using this framework, we extend Dubrovin’s duality between orbit spaces of Coxeter groups and Veselov’s \(\vee \)-systems, to the orbit spaces of exceptional well-generated complex reflection groups of rank 2 and 3. On the Veselov’s \(\vee \)-systems side, we provide a generalization of the notion of \(\vee \)-systems that gives rise to a dual connection which coincides with a Dunkl–Kohno-type connection associated with such groups. In particular, this allows us to treat on the same ground several different examples including Coxeter and Shephard groups. Remarkably, as a by-product of our results, we prove that in some examples, basic flat invariants are not uniquely defined. As far as we know, such a phenomenon has never been pointed out before.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arsie, A., Lorenzoni, P.: \(F\)-manifolds with eventual identities, bidifferential calculus and twisted Lenard-Magri chains. IMRN 2013(17): 3931–3976 (2013)

  2. Arsie, A., Lorenzoni, P.: From Darboux–Egorov system to bi-flat \(F\)-manifolds. J. Geom. Phys. 70, 98–116 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Arsie, A., Lorenzoni, P.: Purely non-local Hamiltonian formalism, Kohno connections and \(\vee \)-systems. J. Math. Phys. 55, 113510 (2014)

  4. Arsie, A., Lorenzoni, P.: \(F\)-manifolds, multi-flat structures and and Painlevé transcendents. arXiv:1501.06435

  5. Broué, M., Malle, G., Rouquier R.: Complex Reflection groups, braid groups, Hecke Algebras. Journal für die reine and angewandte Mathematik, 500, 127–190 (1998)

  6. Burkhardt, H.: Untersuchungen auf dem Gebiete der hyper- elliptischen Modulfunctionen (Zweiter Teil). Math. Ann. 38, 161–224 (1891)

    Article  MathSciNet  MATH  Google Scholar 

  7. Couwenberg, W., Heckman, G., Looijenga, E.: Geometric structures on the complement of a projective arrangement. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 101(1), 69–161 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Coxeter, H.S.M.: Regular Polytopes, 3rd edn. Dover, New York (1973)

    MATH  Google Scholar 

  9. Dubrovin, B.A.: On almost duality for Frobenius manifolds, Geometry, topology and mathematical physics, 75–132. Am. Math. Soc. Transl. Ser. 2, 212 (2004)

  10. Dubrovin B.A. : Differential geometry of the space of orbits of a Coxeter group, Surv. Diff. Geom. 4, 181–211 (1999)

  11. Dubrovin, B.: Flat Pencils of Metrics and Frobenius Manifolds, Integrable Systems and Algebraic Geometry (Kobe/Kyoto), (1997), 47–72. World Sci. Publishing, River Edge (1998)

    Google Scholar 

  12. Dunkl, C.F., Opdam, E.M.: Dunkl operators for complex reflection groups. Proc. Lond. Math. Soc. 86(1), 70–108 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Elkies, N.: The Klein quartic in number theory, In: Levi, S. (ed.) The Eightfold Way: The Beauty of Klein’s Quartic Curve, MSRI Publications, Cambridge, Cambridge University Press, pp 51–102 (1998)

  14. Feigin, M., Silantyev, A.: Singular polynomials from orbit spaces. Compos. Math. 148(6), 1867–1879 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Feigin, M.V., Veselov, A.P.: \(\vee \)-systems, holonomy Lie algebras and logarithmic vector fields. arXiv:1409.2424

  16. Hertling, C.: Frobenius Manifolds and Moduli Spaces for Singularities, Cambridge Tracts in Mathematics 151. Cambridge University Press, Cambridge (2002)

    Book  Google Scholar 

  17. Hertling, C., Manin, Y.: Weak frobenius manifolds. IMRN 6, 277–286 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  18. Iwasaki, K., Kenma, A., Matsumoto, K.: Polynomial invariants and harmonic functions related to exceptional regular polytopes. Experiment. Math. 11(2), 313–319 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kato, M., Mano, T., Sekiguchi, J.: Flat structures without potentials. Rev. Roum. Math. Pures Appl. 60(4), 481–505 (2015)

    MathSciNet  Google Scholar 

  20. Kato, M., Mano, T., Sekiguchi, J.: Flat structure on the space of isomonodromic deformations. arXiv:1511.01608v1

  21. Klein, F.: Ueber die transformationen siebenter Ordnung der elliptischen Funktionen. Math. Ann. 14, 428–471 (1879)

    Article  MathSciNet  MATH  Google Scholar 

  22. Knizhnik, V.G., Zamolodchikov, A.B.: Current algebra and Wess-Zumino models in two dimensions. Nuclear Phys. B 247, 83–103 (1984)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Kohno T.: Holonomy Lie algebras, logarithmic connections and the lower central series of fundamental groups. Singularities (Iowa City, IA, 1986), 171–182, Contemp. Math., 90, Amer. Math. Soc., Providence, RI, (1989)

  24. Kohno, T.: On the holonomy Lie algebra and the nilpotent completion of the fundamental group of the complement of hypersurfaces. Nagoya Math. J. 92, 21–37 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lehrer, G.I., Taylor, D.E.: Unitary reflection groups, Australian Mathematical Society Lecture Series 20. Cambridge University Press, Cambridge (2009)

    Google Scholar 

  26. Looijenga, E.: Arrangements. KZ systems and Lie algebra homology, In: Singularity Theory, LMS Lecture Note Series 263, 109–130 (1999)

  27. Lorenzoni, P., Pedroni, M., Raimondo, A.: \(F\)-manifolds and integrable systems of hydrodynamic type. Arch. Math. 47, 163–180 (2011)

    MathSciNet  MATH  Google Scholar 

  28. Lorenzoni, P.: Darboux–Egorov system, bi-flat \(F\)-manifolds and Painlevé VI. IMRN 12, 3279–3302 (2014)

    Article  MATH  Google Scholar 

  29. Losev, A., Manin Y.I.: Extended modular operads, In: Frobenius manifolds, quantum cohomology and singularities (C. Hertling and M. Marcolli, Eds.), Aspects of Math., E36, 181–211 (2004)

  30. Manin, Y.I.: \(F\)-manifolds with flat structure and Dubrovin’s duality. Adv. Math. 198(1), 5–26 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  31. Maschke, H.: Ueber die quaterniire, endliche, lineare Substitutionsgruppe der Borchadt’schen Moduln. Math. Ann. 30, 496–515 (1887)

    Article  MathSciNet  Google Scholar 

  32. Maschke, H.: Aufstellung des vollen Formensystems einer quaternären Gruppe von 51840 linearen Substitutionen. Math. Ann. 33, 496–515 (1888)

    MATH  Google Scholar 

  33. Metha, M.L.: Basic sets of invariant polynomials for finite reflection groups. Comm. Algebra 16, 1083–1098 (1988)

    Article  MathSciNet  Google Scholar 

  34. Orlik, P.: Basic derivations for unitary reflection groups. Contemp. Math. 90, 211–228 (1989)

    Article  MathSciNet  Google Scholar 

  35. Orlik, P., Solomon, L.: The hessian map in the invariant theory of reflection groups. Nagoya Math. J. 109, 1–21 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  36. Orlik, P., Solomon, L.: Discriminants in the invariant theory of reflection groups. Nagoya Math. J. 109, 23–45 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  37. Orlik, P., Terao, H.: Arrangements of Hyperplanes, Grundlehren der mathematischen Wissenschaften 300. Springer, Berlin (1992)

    MATH  Google Scholar 

  38. Reiner, V.: Reflection groups counting and \(q\)-counting, Summer School on Algebraic and Enumerative Combinatorics, S. Miguel de Seide 2012 (available at http://www.math.umn.edu/~reiner/Talks/Portugal2012/)

  39. Sabbah, C.: Isomonodromic deformations and Frobenius manifolds. Universitext. Springer, Berlin (2008)

    Google Scholar 

  40. Saito, K., Yano, T., Sekiguchi, J.: On a certain generator system of the ring of invariants of a finite reflection group. Comm. Algebra 8(4), 373–408 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  41. Saito, K. : On a linear structure of a quotient variety by a finite reflexion group, RIMS Kyoto preprint 288, (1979)

  42. Saito, K.: Period mapping associated to a primitive form. PubL RIMS, Kyoto Univ. 19, 1231–1264 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  43. Shephard, G.C.: Regular complex polytopes. PLMS 3(2), 82–97 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  44. Shephard, G.C., Todd, J.A.: Finite unitary reflection groups. Canad. J. Math. 6, 274–304 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  45. Veselov, A.P.: Deformations of the root systems and new solutions to generalised WDVV equations. Phys. Lett. A 261, 297–302 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. A. P. Veselov, On geometry of a special class of solutions to generalized WDVV equations, Integrability: the Seiberg-Witten and Whitham equations (Edinburgh), 125–135, Gordon and Breach (1998)

  47. Wiman, A.: Ueber eine einfache Gruppe von 360 ebenen Collineationen. Math. Ann. 47, 531–556 (1896)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank Vic Reiner for having suggested reference [25] and Alexander Veselov for reference [14] and for his interest in this work. This research was partially supported by GNFM through the 2015 Visitors Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Lorenzoni.

Appendices

Appendix 1: Saito coordinates in the cases of the groups \(G_{29},G_{32},G_{33}\)

For higher-rank complex reflection groups, the computations become cumbersome.

In the case of \(G_{29}\) (rank four), \(G_{32}\) (rank four), \(G_{33}\) (rank five) not all conditions have been checked. However, imposing the flatness conditions at some special points, it is sufficient to fix uniquely the parameters in the choice of the basic invariants. For this reason we conjecture that the basic invariants obtained in this way coincide with the generalized Saito flat coordinates of a bi-flat structure. We expect also that the vector potentials of the natural product of this structure coincide with the vector potentials obtained in [20] with a different approach.

1.1 The case of \(G_{29}\)

The basic invariants are (see [31])

$$\begin{aligned} U_1= & {} p_1^4-6p_1^2p_2^2 -6p_1^2p-3^2-6p_1^2p_4^2+p_2^4-6p_2^2p_3^2-6p_2^2p_4^2\\&+\,p_3^4-6p_3^2p_4^2+p_4^4\\ U_2= & {} -\frac{1}{20736}\mathrm{det}(H(u_1))\\ U_3= & {} F_{12}= p_1^{12}-33p_1^8p_2^4-33p_1^8p_3^4-33p_1^8p_4^4+792p_1^6p_2^2p_3^2p_4^2\\&-\,33p_1^4p_2^8+330p_1^4p_2^4p_3^4+330p_1^4p_2^4p_4^4-33p_1^4 p_3^8+330p_1^4p_3^4p_4^4\\&-\,33p_1^4p_4^8+792p_1^2p_2^6p_3^2p_4^2+ 792p_1^2p_2^2p_3^6p_4^2\\&+792p_1^2p_2^2p_3^2p_4^6+p_2^{12}-33p_2^8p_3^4 -33p_2^8p_4^4- 33p_2^4p_3^8+330p_2^4p_3^4p_4^4\\&-\,33p_2^4p_4^8+p_3^{12}-33p_3^8p_4^4 -33p_3^4p_4^8+p_4^{12}\\ U_4= & {} F_{20}=p_1^{20}-19p_1^{16}p_2^4-19p_1^{16}p_3^4-19p_1^{16}p_4^4-336p_1^{14}p_2^2p_3^2p_4^2-494p_1^{12}p_2^8\\&+\,716p_1^{12}p_2^4p_3^4+716p_1^{12}p_2^4p_4^4-494p_1^{12}p_3^8+716p_1^{12}p_3^4p_4^4-494p_1^{12}p_4^8\\&+\,7632p_1^{10}p_2^6p_3^2p_4^2+7632p_1^{10}p_2^2p_3^6p_4^2+7632p_1^{10}p_2^2p_3^2p_4^6-494p_1^8p_2^{12}\\&+\,1038p_1^8p_2^8p_3^4+1038p_1^8p_2^8p_4^4+1038p_1^8p_2^4p_3^8+129012p_1^8p_2^4p_3^4p_4^4\\&+\,1038p_1^8p_2^4p_4^8-494p_1^8p_3^{12}+1038p_1^8p_3^8p_4^4+1038p_1^8p_3^4p_4^8-494p_1^8p_4^{12}\\&+\,7632p_1^6p_2^{10}p_3^2p_4^2+106848p_1^6p_2^6p_3^6p_4^2+106848p_1^6p_2^6p_3^2p_4^6\\&+\,7632p_1^6p_2^2p_3^{10}p_4^2+106848p_1^6p_2^2p_3^6p_4^6+7632p_1^6p_2^2p_3^2p_4^{10}-19p_1^4p_2^{16}\\&+\,716p_1^4p_2^{12}p_3^4+716p_1^4p_2^{12}p_4^4+1038p_1^4p_2^8p_3^8+129012p_1^4p_2^8p_3^4p_4^4\\&+\,1038p_1^4p_2^8p_4^8+716p_1^4p_2^4p_3^{12}+129012p_1^4p_2^4p_3^8p_4^4+129012p_1^4p_2^4p_3^4p_4^8\\&+\,716p_1^4p_2^4p_4^{12}-19p_1^4p_3^{16}+716p_1^4p_3^{12}p_4^4+1038p_1^4p_3^8p_4^8\\&+\,716p_1^4p_3^4p_4^{12}-19p_1^4p_4^{16}-336p_1^2p_2^{14}p_3^2p_4^2+7632p_1^2p_2^{10}p_3^6p_4^2\\&+\,7632p_1^2p_2^{10}p_3^2p_4^6 +7632p_1^2p_2^6p_3^{10}p_4^2+106848p_1^2p_2^6p_3^6p_4^6 +7632p_1^2p_2^6p_3^2p_4^{10}\\&-\,336p_1^2p_2^2p_3^{14}p_4^2+7632p_1^2p_2^2p_3^{10}p_4^6+7632p_1^2p_2^2p_3^6p_4^{10}-336p_1^2p_2^2p_3^2p_4^{14}\\&+\,p_2^{20}-19p_2^{16}p_3^4-19p_2^{16}p_4^4-494p_2^{12}p_3^8+716p_2^{12}p_3^4p_4^4-494p_2^{12}p_4^8\\&-\,494p_2^8p_3^{12}+1038p_2^8p_3^8p_4^4+1038p_2^8p_3^4p_4^8-494p_2^8p_4^{12}-19p_2^4p_3^{16}\\&+\,716p_2^4p_3^{12}p_4^4+1038p_2^4p_3^8p_4^8+716p_2^4p_3^4p_4^{12}-19p_2^4p_4^{16}+p_3^{20}-19p_3^{16}p_4^4\\&-\,494p_3^{12}p_4^8-494p_3^8p_4^{12}-19p_3^4p_4^{16}+p_4^{20}. \end{aligned}$$

We conjecture that Saito flat coordinates are

$$\begin{aligned}&u_1=U_1,\quad u_2=U_2+c_1U_1^2,\quad u_3=U_3+c_2U_1^3+c_3U_1U_2,\\&u_4=U_4+c_4U_1^5+c_5U_1^3U_2+c_6U_1^2U_3+c_7U_1U_2^2+c_8U_2U_3. \end{aligned}$$

with

$$\begin{aligned}&c_1 =\frac{1}{10},\quad c_2 = \frac{11}{1600},\quad c_3 = -\frac{99}{160},\quad c_4 = -\frac{4959}{1600000},\\&c_5 = \frac{1653}{16000},\quad c_6 = -\frac{17}{50},\quad c_7 = -\frac{513}{3200},\quad c_8 = -\frac{9}{20}. \end{aligned}$$

1.2 The case of \(G_{32}\)

Basic invariants are (see [32])

$$\begin{aligned} u_1= & {} F_{12}\\ u_2= & {} -54p_4^{18}+(17)(54)C_6p_4^{12}+(54)(1870)C_9p_4^9+\frac{1}{2}(17)(27) \left( 19C_6^2-15C_{12}\right) p_4^6\\&+\,(54)(170)C_6C_9p_4^3+C_6^3-30C_6C_{12}-25C_{18}=F_{18}\\ u_3= & {} 1728C_6p_4^{18}-(36)(1728)C_9p_4^{15}+(15)(144)\left( 7C_{12}+C_6^2\right) p_4^{12}\\&-\,(10)(1728)C_6C_9p_4^9+(36)\left( 178C_{18}-135C_6C_{12}+5C_6^3\right) p_4^6\\&+\,432\left( 41C_{12}-C_6^2\right) C_9p_4^3+C_6^4+6C_6^2C_{12}-16C_6C_{18}+9C_{12}^2=F_{24}\\ u_4= & {} F_{30}=-2(6^4)C_6p_4^{24}+312(6^4)C_9p_4^{21}+216\left( 715C_{12}-127C_6^2\right) p_4^{18}\\&+\,272(6^4)C_6C_9p_4^{15}+18\left( 1306C_{18}+6045C_6C_{12}-295C_6^3\right) p_4^{12}\\&+\,216\left( 73C_6^2-5473C_{12}\right) C_9p_4^9\\&+\,\frac{3}{2}\left( 16648C_6C_{18}+2334C_6^2C_{12}-20709C_{12}^2-C_6^4\right) p_4^6\\&-\,36\left( 1370C_{18}-657C_6C_{12}+7C_6^3\right) C_9p_4^3+C_6^5-19C_6^3C_{12}+29C_6^2C_{18}\\&-\,6C_6C_{12}^2-5C_{12}C_{18}, \end{aligned}$$

with

$$\begin{aligned} C_6= & {} p_1^6-10p_1^3p_2^3-10p_1^3p_3^3+p_2^6-10p_2^3p_3^3+p_3^6\\ C_9= & {} \left( p_1^3-p_2^3\right) \left( p_2^3-p_3^3\right) \left( -p_1^3+p_3^3\right) \\ C_{12}= & {} \left( p_1^3+p_2^3+p_3^3\right) \left( \left( p_1^3+p_2^3+p_3^3\right) ^3+216p_1^3p_2^3p_3^3\right) \\ C_{18}= & {} \left( p_1^3+p_2^3+p_3^3\right) ^6-540p_1^3 p_2^3p_3^3\left( p_1^3+p_2^3+p_3^3\right) ^3-5832p_1^6p_2^6p_3^6. \end{aligned}$$

We conjecture that Saito flat coordinates are

$$\begin{aligned} u_1=F_{12},\quad u_2=F_{18},\quad u_3=F_{24}+c_1F_{12}^2,\quad u_4=F_{30}+c_2F_{12}F_{18}. \end{aligned}$$

with \(c_1 = -\frac{21}{25},\quad c_2 = -\frac{11}{25}\). Up to an inessential constant factor, they coincide with the choice of basic invariants of Orlik and Terao.

1.3 The case of \(G_{33}\)

The basic invariants are (see [6] with corrections of [34])

$$\begin{aligned} U_1= & {} p_1^4-8a_1p_1+48p_2p_3p_4p_5\\ U_2= & {} p_1^6+\left( -20p_2^3-20p_3^3-20p_4^3-20p_5^3\right) p_1^3+360p_1^2p_2p_3p_4p_5\\&-\,8p_2^6+80p_2^3p_3^3+80p_2^3p_4^3 +80p_2^3p_5^3-8p_3^6+80p_3^3p_4^3+80p_3^3p_5^3\\&-\,8p_4^6+80p_4^3p_5^3-8p_5^6\\ U_3= & {} \frac{1}{63700992}\mathrm{det}(H(u_1))\\ U_4= & {} 5a_2p_1^6+(99a_3+a_1a_2)p_1^3+216a_4-36a_1a_3+24a_2^2-4a_1^2a_2\\&+p_2p_3p_4p_5\left( 3p_1^8+33a_1p_1^5+(18a_2+30a_1^2)p_1^2\right) \\&+(p_2p_3p_4p_5)^2 (243p_1^4+108a_1p_1)\\ U_5= & {} 4a_3p_1^9+(54a_4+12a_1a_3-a_2^2)p_1^6+(162a_1a_4-18a_2a_3\\&+12a_1^2a_3-2a_1a_2^2)p_1^3+27a_3^2-18a_1a_2a_3+4a_1^3a_3+4a_2^3-a_1^2a_2^2\\&+p_2p_3p_4p_5(6a_2p_1^8+p_1^5(54a_3+12a_1a_2)+p_1^2(243a_4+54a_1a_3\\&-36a_2^2+6a_1^2a_2))+\,(p_2p_3p_4p_5)^2(3p_1^{10}+18a_1p_1^7\\&+p_1^4(54a_2+27a_1^2)+p_1(162a_3-54a_1a_2+12a_1^3)). \end{aligned}$$

with

$$\begin{aligned}&a_1= -p_2^3-p_3^3-p_4^3-p_5^3,\quad a_2 =p_2^3p_3^3+p_2^3p_4^3+p_2^3p_5^3+p_3^3p_4^3+p_3^3p_5^3+p_4^3p_5^3\\&a_3= -p_2^3p_3^3p_4^3-p_2^3p_3^3p_5^3-p_2^3p_4^3p_5^3-p_3^3p_4^3p_5^3,\quad a_4=p_2^3p_3^3p_4^3p_5^3 \end{aligned}$$

We conjecture that Saito flat coordinates are

$$\begin{aligned}&u_1=U_1,\quad u_2=U_2,\quad u_3=U_3+c_1U_1U_2,\quad u_4=U_4+c_2U_1^3+c_3U_2^2,\\&u_5=U_5+c_4U_1^3U_2+c_5U_1^2U_3+c_6U_2^3+c_7U_2U_4. \end{aligned}$$

with

$$\begin{aligned}&c_1 = -\frac{1}{768},\quad c_2 = -\frac{5}{3072},\quad c_3 = -\frac{5}{2304},\quad c_4 = \frac{11}{884736}, \quad c_5 = -\frac{1}{128},\\&\quad c_6 = \frac{11}{1990656},\quad c_7 = -\frac{1}{288}. \end{aligned}$$

Appendix 2: The non-well-generated cases

The procedure we have introduced works only partially for non-well- generated complex reflection groups in the sense that it allows us to reconstruct flat connections, but it fails to provide a compatible product \(\circ \). Let us present what happens if one tries to implement the algorithm in the case of \(G_7\), a non-well- generated complex reflection group of rank 2, whose ring of invariants is generated by the following polynomials (see [25]):

$$\begin{aligned} u_1=\left( p_1^4+(2i)\sqrt{3}p_1^2p_2^2+p_2^4\right) ^3, \quad u_2=(p_1^5p_2-p_1p_2^5)^2. \end{aligned}$$

Since \(u_1\) and \(u_2\) have the same degree, the connection \(\nabla ^{(1)}\) is uniquely determined. It turns out that it is almost hydrodynamically equivalent to the dual connection. Unfortunately, defining the unit of the product as a flat vector field and defining the product \(\circ \) in the standard way, we obtain that the compatibility is no longer satisfied. Similar results hold true in the case of the groups \(G_{11}\), \(G_{12}\), \(G_{13}\), \(G_{19}\) and \(G_{22}\). In the case of \(G_{15}\), there is one parameter in the basic invariants. It turns out that the connection \(\nabla ^{(1)}\) is almost hydrodynamically equivalent to the dual connection for each value of this parameter and that the compatibility with the product \(\circ \) is never satisfied.

Appendix 3: Dual connections for Shephard groups

In all the cases we dealt with in this section, the dual connection has the general form

$$\begin{aligned} \Gamma ^{(2)i}_{jk}=-c^{*i}_{jk}+\lambda C^{i}_{jk}, \end{aligned}$$

where \( C^{i}_{jk}\) are the Christoffel symbol of a Dunkl–Kohno-type connection

$$\begin{aligned} \nabla +\frac{1}{N}\sum _{H\in \mathcal {H}}\frac{d\alpha _H}{\alpha _H}\otimes \sigma _H\pi _H, \end{aligned}$$
(11.1)

where the projectors \(\pi _H\) and the weights \(\sigma _{H}\) satisfy the condition

$$\begin{aligned} \sum _{H\in \mathcal {H}}\sigma _H\pi _H=0. \end{aligned}$$
(11.2)

Again we denoted the weights \(\sigma _H\) since they are not the weights appearing in the standard procedure (in particular they do not coincide with the order of reflection). We have treated in detail the case \(G_{26}\), G(3, 1, 2) and G(3, 1, 3). Let us briefly summarize the remaining cases. The value of c such that \(\lambda =0\) corresponds to the standard choice of the dual connection.

1.1 The case of \(G_{5}\)

In this case \(\lambda =-\frac{1}{4}+\frac{i}{72}\sqrt{3}c\) and

$$\begin{aligned} C^i_{lp}(u)=3\sum _{s=1}^{4}\frac{1}{||\alpha _s||^2}\frac{(\alpha _s)_l \,(\alpha _s)_p \, (\check{\bar{\alpha }}_s)^i}{\alpha _s(u)}-3\sum _{s=5}^{8}\frac{1}{||\alpha _s||^2}\frac{(\alpha _s)_l \,(\alpha _s)_p \, (\check{\bar{\alpha }}_s)^i}{\alpha _s(u)}, \end{aligned}$$

where \(\alpha _1= \left[ 2,-\sqrt{3}+1+i-i\sqrt{3}\right] \), \(\alpha _2= \left[ 2,\sqrt{3}+1-i-i \sqrt{3}\right] \), \(\alpha _3= \left[ 2,\sqrt{3}-1-i+i \sqrt{3}\right] \), \(\alpha _4= \left[ 2,-\sqrt{3}-1+i+i \sqrt{3}\right] \), \(\alpha _5= \left[ 2,\sqrt{3}+1+i+i \sqrt{3}\right] \), \(\alpha _6= \left[ 2,-\sqrt{3}+1-i+i \sqrt{3}\right] \), \(\alpha _7= \left[ 2,\sqrt{3}-1+i-i \sqrt{3}\right] \), \(\alpha _8= \left[ 1,-\sqrt{3}-1-i-i\sqrt{3}\right] \) . The vector potential is given by:

$$\begin{aligned} A^1= -(4i)\sqrt{3}u_1^3-\frac{2}{3}u_1^3 c+u_1u_2,\quad A^2=-(4i)\sqrt{3}u_1^4 c-\frac{1}{3}u_1^4 c^2+\frac{1}{2}u_2^2. \end{aligned}$$

Finally, for \(c=-6i\sqrt{3}\) one recovers the Frobenius structure listed in Table 1. Among the analyzed Shephard groups (which are not Coxeter groups) whose bi-flat F-manifold structure depends on a parameter, this is the only case for which the Frobenius structure appears directly with the standard approach we followed in Sect. 5.

1.2 The case of \(G_{6}\)

The generalized Saito flat coordinates are \(u_1=U_1,\, u_2=U_2+c U_1^3\) where (see [25]):

$$\begin{aligned} U_1=p_1^4+2i\sqrt{3}p_1^2p_2^2+p_2^4,\qquad U_2=p_1^{10}p_2^2-2p_1^6p_2^6+p_1^2p_2^{10}. \end{aligned}$$

In this case \(\lambda =-8ic\sqrt{3}-\frac{5}{12},\) and

$$\begin{aligned} C^i_{lp}(u)=2\sum _{s=1}^{6}\frac{1}{||\alpha _s||^2}\frac{(\alpha _s)_l \,(\alpha _s)_p \, (\check{\bar{\alpha }}_s)^i}{\alpha _s(u)}-3\sum _{s=7}^{10}\frac{1}{||\alpha _s||^2}\frac{(\alpha _s)_l \,(\alpha _s)_p \, (\check{\bar{\alpha }}_s)^i}{\alpha _s(u)}, \end{aligned}$$

where \(\alpha _1,\ldots ,\alpha _6\) define the mirrors of the reflections of order 2 and \(\alpha _7,\ldots ,\alpha _{10}\) define the mirrors of the reflections of order 3. The vector potential is given by:

$$\begin{aligned} A^1= u_2u_1+\frac{1}{144}u_1^4\left( i\sqrt{3}-72c\right) ,\quad A^2=\frac{1}{2}u_2^2+\frac{1}{120}u_1^6c\left( i\sqrt{3}-36c\right) . \end{aligned}$$

Finally, for \(c=\frac{1}{72}i\sqrt{3}\) one recovers the Frobenius structure listed in Table 1.

1.3 The case of \(G_{9}\)

The generalized Saito flat coordinates are \(u_1=U_1,\, u_2=U_2+c U_1^3\) where (see [25]):

$$\begin{aligned} U_1=p_1^8+14p_1^4p_2^4+p_2^8,\qquad U_2=\left( p_1^{12}-33p_1^8p_2^4-33p_1^4p_2^8+p_2^{12}\right) ^2. \end{aligned}$$

In this case \(\lambda =-\frac{4}{3}c-\frac{11}{12},\) and

$$\begin{aligned} C^i_{lp}(u)=\sum _{s=1}^{12}\frac{1}{||\alpha _s||^2}\frac{(\alpha _s)_l \,(\alpha _s)_p \, (\check{\bar{\alpha }}_s)^i}{\alpha _s(u)}-2\sum _{s=13}^{18}\frac{1}{||\alpha _s||^2}\frac{(\alpha _s)_l \,(\alpha _s)_p \, (\check{\bar{\alpha }}_s)^i}{\alpha _s(u)}, \end{aligned}$$

where \(\alpha _1,\ldots ,\alpha _{12}\) define the mirrors of the reflections of order 2 and \(\alpha _{13},\ldots ,\alpha _{18}\) define the mirrors of the reflections of order 4. The vector potential is given by:

$$\begin{aligned} A^1= \frac{1}{4}(-2c-1)u_1^4+u_2u_1,\quad A^2= \frac{1}{10}(-3c-3)u_1^6+\frac{1}{2}u_2^2. \end{aligned}$$

Finally, for \(c=-\frac{1}{2}\) one recovers the Frobenius structure listed in Table 1.

1.4 The case of \(G_{10}\)

The Saito flat coordinates are \(u_1=U_1,\, u_2=U_2+c U_1^2\) where (see [25]):

$$\begin{aligned} U_1=p_1^{12}-33p_1^8p_2^4-33p_1^4p_2^8+p_2^{12},\qquad U_2=\left( p_1^8+14p_1^4p_2^4+p_2^8\right) ^3. \end{aligned}$$

In this case \(\lambda =-\frac{1}{2}c-\frac{7}{24},\) and

$$\begin{aligned} C^i_{lp}(u)=3\sum _{s=1}^{8}\frac{1}{||\alpha _s||^2}\frac{(\alpha _s)_l \,(\alpha _s)_p \, (\check{\bar{\alpha }}_s)^i}{\alpha _s(u)}-4\sum _{s=9}^{14}\frac{1}{||\alpha _s||^2}\frac{(\alpha _s)_l \,(\alpha _s)_p \, (\check{\bar{\alpha }}_s)^i}{\alpha _s(u)}, \end{aligned}$$

where \(\alpha _1,\ldots ,\alpha _{8}\) define the mirrors of the reflections of order 3 and \(\alpha _{9},\ldots ,\alpha _{14}\) define the mirrors of the reflections of order 2. The vector potential is given by:

$$\begin{aligned} A^1= \frac{1}{3}(-2c-1)u_1^3+u_2u_1,\quad A^2= \frac{1}{6}(-2c^2-2c)u_1^4+\frac{1}{2}u_2^2. \end{aligned}$$

Finally, for \(c=-\frac{1}{2}\) one recovers the Frobenius structure listed in Table 1.

1.5 The case of \(G_{14}\)

The generalized Saito flat coordinates of the form \(u_1=U_1,\, u_2=U_2+c U_1^4\) where (see [25]):

$$\begin{aligned} U_1=p_1^5p_2-p_1p_2^5,\qquad U_2=\left( p_1^{12}-33p_1^8p_2^4-33p_1^4p_2^8+p_2^{12}\right) ^2. \end{aligned}$$

In this case \(\lambda =\frac{1}{144}c-\frac{11}{24},\) and

$$\begin{aligned} C^i_{lp}(u)=2\sum _{s=1}^{12}\frac{1}{||\alpha _s||^2}\frac{(\alpha _s)_l \,(\alpha _s)_p \, (\check{\bar{\alpha }}_s)^i}{\alpha _s(u)}-3\sum _{s=13}^{20}\frac{1}{||\alpha _s||^2}\frac{(\alpha _s)_l \,(\alpha _s)_p \, (\check{\bar{\alpha }}_s)^i}{\alpha _s(u)}, \end{aligned}$$

where \(\alpha _1,\ldots ,\alpha _{12}\) define the mirrors of the reflections of order 2 and \(\alpha _{13},\ldots ,\alpha _{20}\) define the mirrors of the reflections of order 3. The vector potential is given by:

$$\begin{aligned} A^1=\frac{1}{5}(-2c+108)u_1^5+u_2u_1,\quad A^2= \frac{1}{14}(-4c^2+432c)u_1^8+\frac{1}{2}u_2^2. \end{aligned}$$

Finally, for \(c=54\) one recovers the Frobenius structure listed in Table 1.

1.6 The case of \(G_{17}\)

The Saito flat coordinates of the form \(u_1=U_1,\, u_2=U_2+c U_1^3\) where (see [25]):

$$\begin{aligned} U_1= & {} p_1^{20}-\frac{38}{3}\sqrt{5}p_1^{18}p_2^2-19p_1^{16}p_2^4-152\sqrt{5}p_1^{14}p_2^6-494p_1^{12}p_2^8\\&+\,\frac{988}{3}\sqrt{5}p_1^{10}p_2^{10}+p_2^{20} -\frac{38}{3}\sqrt{5}p_2^{18}p_1^2 -19p_2^{16}p_1^4\\&-\,152\sqrt{5}p_2^{14}p_1^6-494p_2^{12}p_1^8,\\ U_2= & {} \left( p_1^{29}p_2-\frac{116}{45}\sqrt{5}p_1^{27}p_2^3+\frac{1769}{25}p_1^{25}p_2^5+\frac{464}{5}\sqrt{5}p_1^{23}p_2^7+\frac{2001}{5}p_1^{21}p_2^9\right. \\&-\,\frac{2668}{15}\sqrt{5}p_1^{19}p_2^{11}+\frac{12673}{5}p_1^{17}p_2^{13}-p_2^{29}p_1+\frac{116}{45}\sqrt{5}p_2^{27}p_1^3 -\frac{1769}{25}p_2^{25}p_1^5\\&\left. -\,\frac{464}{5}\sqrt{5}p_2^{23}p_1^7-\frac{2001}{5}p_2^{21}p_1^9+\frac{2668}{15}\sqrt{5}p_2^{19}p_1^{11}-\frac{12673}{5}p_2^{17}p_1^{13}\right) ^2. \end{aligned}$$

In this case \(\lambda =-\frac{29}{60}+40\sqrt{5}c,\) and

$$\begin{aligned} C^i_{lp}(u)=2\sum _{s=1}^{30}\frac{1}{||\alpha _s||^2}\frac{(\alpha _s)_l \,(\alpha _s)_p \, (\check{\bar{\alpha }}_s)^i}{\alpha _s(u)}-5\sum _{s=31}^{42}\frac{1}{||\alpha _s||^2}\frac{(\alpha _s)_l \,(\alpha _s)_p \, (\check{\bar{\alpha }}_s)^i}{\alpha _s(u)}, \end{aligned}$$

where \(\alpha _1,\ldots ,\alpha _{30}\) define the mirrors of the reflections of order 2 and \(\alpha _{31},\ldots ,\alpha _{42}\) define the mirrors of the reflections of order 5. The vector potential is given by:

$$\begin{aligned} A^1= u_1u_2+\frac{1}{1200}\left( \sqrt{5}-600 c\right) u_1^4,\quad A^2= \frac{1}{2}u_2^2+\frac{1}{1000}c u_1^6\left( \sqrt{5}-300 c\right) . \end{aligned}$$

Finally, for \(c=\frac{1}{600}\sqrt{5}\) one recovers the Frobenius structure listed in Table 1.

1.7 The case of \(G_{18}\)

The generalized Saito flat coordinates are \(u_1=U_1,\, u_2=U_2+c U_1^2\) where (see [25]):

$$\begin{aligned} U_1= & {} p_1^{29}p_2-\frac{116}{45}\sqrt{5}p_1^{27}p_2^3+\frac{1769}{25}p_1^{25}p_2^5+\frac{464}{5}\sqrt{5}p_1^{23}p_2^7+ +\frac{2001}{5}p_1^{21}p_2^9\\&-\,\frac{2668}{15}\sqrt{5}p_1^{19}p_2^{11}+\frac{12673}{5}p_1^{17}p_2^{13}-p_2^{29}p_1 +\frac{116}{45}\sqrt{5}p_2^{27}p_1^3-\frac{1769}{25}p_2^{25}p_1^5\\&-\,\frac{464}{5}\sqrt{5}p_2^{23}p_1^7-\frac{2001}{5}p_2^{21}p_1^9+\frac{2668}{15}\sqrt{5}p_2^{19}p_1^{11}-\frac{12673}{5}p_2^{17}p_1^{13},\\ U_2= & {} \left( p_1^{20}-\frac{38}{3}\sqrt{5}p_1^{18}p_2^2-19p_1^{16}p_2^4-152\sqrt{5}p_1^{14}p_2^6-494p_1^{12}p_2^8\right. \\&+\,\frac{988}{3}\sqrt{5}p_1^{10}p_2^{10}+p_2^{20}+-\frac{38}{3}\sqrt{5}p_2^{18}p_1^2-19p_2^{16}p_1^4\\&\left. -152\sqrt{5}p_2^{14}p_1^6-494p_2^{12}p_1^8\right) ^3. \end{aligned}$$

In this case \(\lambda =-\frac{19}{60}+\frac{1}{600}\sqrt{5}c,\) and

$$\begin{aligned} C^i_{lp}(u)=3\sum _{s=1}^{20}\frac{1}{||\alpha _s||^2}\frac{(\alpha _s)_l \,(\alpha _s)_p \, (\check{\bar{\alpha }}_s)^i}{\alpha _s(u)}-5\sum _{s=21}^{32}\frac{1}{||\alpha _s||^2}\frac{(\alpha _s)_l \,(\alpha _s)_p \, (\check{\bar{\alpha }}_s)^i}{\alpha _s(u)}, \end{aligned}$$

where \(\alpha _1,\ldots ,\alpha _{20}\) define the mirrors of the reflections of order 3 and \(\alpha _{21},\ldots ,\alpha _{32}\) define the mirrors of the reflections of order 5. The vector potential is given by:

$$\begin{aligned} A^1= 20u_1^3\sqrt{5}-\frac{2}{3}u_1^3 c+u_1u_2,\quad A^2= 20 c u_1^4\sqrt{5}-\frac{1}{3}c^2u_1^4+\frac{1}{2}u_2^2. \end{aligned}$$

Finally, for \(c=30\sqrt{5}\) one recovers the Frobenius structure listed in Table 1.

1.8 The case of \(G_{21}\)

The generalized Saito flat coordinates are \(u_1=U_1,\, u_2=U_2+c U_1^5\) where (see [25]):

$$\begin{aligned} U_1= & {} p_1^{12}+\frac{22}{5}\sqrt{5}p_1^{10}p_2^2-33p_1^8p_2^4-\frac{44}{5}\sqrt{5}p_1^6p_2^6-33p_1^4p_2^8+\frac{22}{5}\sqrt{5}p_1^2p_2^{10}+p_2^{12},\\ U_2= & {} \left( p_1^{29}p_2-\frac{116}{45}\sqrt{5}p_1^{27}p_2^3+\frac{1769}{25}p_1^{25}p_2^5+\frac{464}{5}\sqrt{5}p_1^{23}p_2^7+\frac{2001}{5}p_1^{21}p_2^9\right. \\&-\,\frac{2668}{15}\sqrt{5}p_1^{19}p_2^{11}+\frac{12673}{5}p_1^{17}p_2^{13}-p_2^{29}p_1+\frac{116}{45}\sqrt{5}p_2^{27}p_1^3-\frac{1769}{25}p_2^{25}p_1^5\\&\left. -\,\frac{464}{5}\sqrt{5}p_2^{23}p_1^7-\frac{2001}{5}p_2^{21}p_1^9+\frac{2668}{15}\sqrt{5}p_2^{19}p_1^{11}-\frac{12673}{5}p_2^{17}p_1^{13}\right) ^2.\\ \end{aligned}$$

In this case \(\lambda =-\frac{1}{300}\left( 29\sqrt{5}+14400c\right) \sqrt{5},\) and

$$\begin{aligned} C^i_{lp}(u)=2\sum _{s=1}^{30}\frac{1}{||\alpha _s||^2}\frac{(\alpha _s)_l \,(\alpha _s)_p \, (\check{\bar{\alpha }}_s)^i}{\alpha _s(u)}-3\sum _{s=31}^{50}\frac{1}{||\alpha _s||^2}\frac{(\alpha _s)_l \,(\alpha _s)_p \, (\check{\bar{\alpha }}_s)^i}{\alpha _s(u)}, \end{aligned}$$

where \(\alpha _1,\ldots ,\alpha _{30}\) define the mirrors of the reflections of order 2 and \(\alpha _{31},\ldots ,\alpha _{50}\) define the mirrors of the reflections of order 3. The vector potential is given by:

$$\begin{aligned} A^1= -\frac{1}{1800}u_1^6\left( \sqrt{5}+600c\right) +u_1u_2,\quad A^2= -\frac{1}{1080}c\left( \sqrt{5}+300c\right) u_1^{10}+\frac{1}{2}u_2^2. \end{aligned}$$

Finally, for \(c=-\frac{1}{600}\sqrt{5}\) one recovers the Frobenius structure listed in Table 1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arsie, A., Lorenzoni, P. Complex reflection groups, logarithmic connections and bi-flat F-manifolds. Lett Math Phys 107, 1919–1961 (2017). https://doi.org/10.1007/s11005-017-0963-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-017-0963-x

Keywords

Mathematics Subject Classification

Navigation