Skip to main content
Log in

Peroxiredoxin II exerts neuroprotective effects by inhibiting endoplasmic reticulum stress and oxidative stress-induced neuronal pyroptosis

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Intracerebral hemorrhage (ICH) is a critical neurological condition with few treatment options, where secondary immune responses and specific cell death forms, like pyroptosis, worsen brain damage. Pyroptosis involves gasdermin-mediated membrane pores, increasing inflammation and neural harm, with the NLRP3/Caspase-1/GSDMD pathway being central to this process. Peroxiredoxin II (Prx II), recognized for its mitochondrial protection and reactive oxygen species (ROS) scavenging abilities, appears as a promising neuronal pyroptosis modulator. However, its exact role and action mechanisms need clearer definition. This research aims to explore Prx II impact on neuronal pyroptosis and elucidate its mechanisms, especially regarding endoplasmic reticulum (ER) stress and oxidative stress-induced neuronal damage modulation.

Methods and results

Utilizing MTT assays, Microscopy, Hoechst/PI staining, Western blotting, and immunofluorescence, we found Prx II effectively reduces LPS/ATP-induced pyroptosis and neuroinflammation in HT22 hippocampal neuronal cells. Our results indicate Prx II’s neuroprotective actions are mediated through PI3K/AKT activation and ER stress pathway inhibition, diminishing mitochondrial dysfunction and decreasing neuronal pyroptosis through the ROS/MAPK/NF-κB pathway. These findings highlight Prx II potential therapeutic value in improving intracerebral hemorrhage outcomes by lessening secondary brain injury via critical signaling pathway modulation involved in neuronal pyroptosis.

Conclusions

Our study not only underlines Prx II importance in neuroprotection but also opens new therapeutic intervention avenues in intracerebral hemorrhage, stressing the complex interplay between redox regulation, ER stress, and mitochondrial dynamics in neuroinflammation and cell death management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data generated in our study are available upon request from the corresponding author.

Abbreviations

ICH:

Intracerebral hemorrhage

Prx II:

Peroxiredoxin II

ROS:

Reactive oxygen species

ER:

Endoplasmic reticulum

LPS:

Lipopolysaccharide

HT22:

Hippocampal neuron cells

OD:

Optical density

References

  1. Qureshi AI, Mendelow AD, Hanley DF (2009) Intracerebral haemorrhage. Lancet (London, England) 373:1632–1644

    Article  PubMed  Google Scholar 

  2. Xue M, Yong VW (2020) Neuroinflammation in intracerebral haemorrhage: immunotherapies with potential for translation. The Lancet Neurology 19:1023–1032

    Article  CAS  PubMed  Google Scholar 

  3. Sheth KN (2022) Spontaneous Intracerebral Hemorrhage. N Engl J Med 387:1589–1596

    Article  CAS  PubMed  Google Scholar 

  4. Lei P, Li Z, Hua Q, Song P, Gao L, Zhou L, Cai Q (2023) Ursolic Acid Alleviates Neuroinflammation after Intracerebral Hemorrhage by Mediating Microglial Pyroptosis via the NF-κB/NLRP3/GSDMD Pathway. Int J Mol Sci 24:14771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ding Z, Zhong Z, Wang J, Zhang R, Shao J, Li Y, Wu G, Tu H, Yuan W, Sun H, Wang Q (2022) Inhibition of dectin-1 alleviates neuroinflammatory injury by attenuating NLRP3 inflammasome-mediated pyroptosis after intracerebral hemorrhage in mice: preliminary study results. J Inflamm Res 15:5917–5933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mohammed Thangameeran SI, Tsai S-T, Hung H-Y, Hu W-F, Pang C-Y, Chen S-Y, Liew H-K (2020) A role for endoplasmic reticulum stress in intracerebral hemorrhage. Cells 9:750

    Article  PubMed  PubMed Central  Google Scholar 

  7. Yang M, Deng S, Jiang J, Tian M, Xiao L, Gong Y (2023) Oxytocin improves intracerebral hemorrhage outcomes by suppressing neuronal pyroptosis and mitochondrial fission. Stroke 54:1888–1900

    Article  CAS  PubMed  Google Scholar 

  8. Kim S-U, Jin M-H, Kim YS, Lee S-H, Cho YS, Cho K-J, Lee K-S, Kim YI, Kim GW, Kim J-M et al (2011) Peroxiredoxin II preserves cognitive function against age-linked hippocampal oxidative damage. Neurobiol Aging 32:1054–1068

    Article  CAS  PubMed  Google Scholar 

  9. Jin M-H, Yu J-B, Sun H-N, Jin Y-H, Shen G-N, Jin C-H, Cui Y-D, Lee D-S, Kim S-U, Kim J-S et al (2019) Peroxiredoxin II maintains the mitochondrial membrane potential against alcohol-induced apoptosis in HT22 cells. Antioxidants (Basel, Switzerland) 9:1

    PubMed  Google Scholar 

  10. Miao R, Jiang C, Chang WY, Zhang H, An J, Ho F, Chen P, Zhang H, Junqueira C, Amgalan D et al (2023) Gasdermin D permeabilization of mitochondrial inner and outer membranes accelerates and enhances pyroptosis. Immunity 56:2523–2541

    Article  CAS  PubMed  Google Scholar 

  11. Chen G, Gao C, Yan Y, Wang T, Luo C, Zhang M, Chen X, Tao L (2020) Inhibiting ER stress weakens neuronal pyroptosis in a mouse acute hemorrhagic stroke model. Mol Neurobiol 57:5324–5335

    Article  CAS  PubMed  Google Scholar 

  12. Chen Q, Thompson J, Hu Y, Das A, Lesnefsky EJ (2017) Metformin attenuates ER stress-induced mitochondrial dysfunction. Transl Res: J Lab Clin Med 190:40–50

    Article  CAS  Google Scholar 

  13. Liu B, Zhang Y, Yang Z, Liu M, Zhang C, Zhao Y, Song C (2021) ω-3 DPA protected neurons from neuroinflammation by balancing microglia M1/M2 polarizations through inhibiting NF-κB/MAPK p38 signaling and activating neuron-BDNF-PI3K/AKT pathways. Mar Drugs 19:587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Xu P, Tao C, Zhu Y, Wang G, Kong L, Li W, Li R, Li J, Zhang C, Wang L et al (2021) TAK1 mediates neuronal pyroptosis in early brain injury after subarachnoid hemorrhage. J Neuroinflammation 18:188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bobinger T, Burkardt P, Huttner HB, Manaenko A (2018) Programmed cell death after intracerebral hemorrhage. Curr Neuropharmacol 16:1267–1281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Song D, Yeh C-T, Wang J, Guo F (2022) Perspectives on the mechanism of pyroptosis after intracerebral hemorrhage. Front Immunol 13:989503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Al-Mulla F, Bitar MS, Taqi Z, Yeung KC (2013) RKIP: much more than Raf kinase inhibitory protein. J Cell Physiol 228:1688–1702

    Article  CAS  PubMed  Google Scholar 

  18. Su L, Zhao H, Zhang X, Lou Z, Dong X (2016) UHPLC-Q-TOF-MS based serum metabonomics revealed the metabolic perturbations of ischemic stroke and the protective effect of RKIP in rat models. Mol BioSyst 12:1831–1841

    Article  CAS  PubMed  Google Scholar 

  19. Gu L, Sun M, Li R, Tao Y, Luo X, Xu J, Wu X, Xie Z (2022) Activation of RKIP binding ASC attenuates neuronal pyroptosis and brain injury via caspase-1/GSDMD signaling pathway after intracerebral hemorrhage in mice. Transl Stroke Res 13:1037–1054

    Article  CAS  PubMed  Google Scholar 

  20. Chen S, Zuo Y, Huang L, Sherchan P, Zhang J, Yu Z, Peng J, Zhang J, Zhao L, Doycheva D et al (2019) The MC4 receptor agonist RO27-3225 inhibits NLRP1-dependent neuronal pyroptosis via the ASK1/JNK/p38 MAPK pathway in a mouse model of intracerebral haemorrhage. Br J Pharmacol 176:1341–1356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jin P, Qi D, Cui Y, Lenahan C, Zhang JH, Tao X, Deng S, Tang J (2022) Aprepitant attenuates NLRC4-dependent neuronal pyroptosis via NK1R/PKCδ pathway in a mouse model of intracerebral hemorrhage. J Neuroinflammation 19:198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yan J, Xu W, Lenahan C, Huang L, Wen J, Li G, Hu X, Zheng W, Zhang JH, Tang J (2021) CCR5 activation promotes NLRP1-dependent neuronal pyroptosis via CCR5/PKA/CREB pathway after intracerebral hemorrhage. Stroke 52:4021–4032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lin J, Xu Y, Guo P, Chen Y-J, Zhou J, Xia M, Tan B, Liu X, Feng H, Chen Y (2023) CCL5/CCR5-mediated peripheral inflammation exacerbates blood-brain barrier disruption after intracerebral hemorrhage in mice. J Transl Med 21:196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lu Y, Zhang X-S, Zhang Z-H, Zhou X-M, Gao Y-Y, Liu G-J, Wang H, Wu L-Y, Li W, Hang C-H (2018) Peroxiredoxin 2 activates microglia by interacting with toll-like receptor 4 after subarachnoid hemorrhage. J Neuroinflammation 15:87

    Article  PubMed  PubMed Central  Google Scholar 

  25. Liu D-L, Zhao L-X, Zhang S, Du J-R (2016) Peroxiredoxin 1-mediated activation of TLR4/NF-κB pathway contributes to neuroinflammatory injury in intracerebral hemorrhage. Int Immunopharmacol 41:82–89

    Article  PubMed  Google Scholar 

  26. Zhang J, Novakovic N, Hua Y, Keep RF, Xi G (2021) Role of lipocalin-2 in extracellular peroxiredoxin 2-induced brain swelling, inflammation and neuronal death. Exp Neurol 335:113521

    Article  CAS  PubMed  Google Scholar 

  27. Tan X, Chen J, Keep RF, Xi G, Hua Y (2020) Prx2 (peroxiredoxin 2) as a cause of hydrocephalus after intraventricular hemorrhage. Stroke 51:1578–1586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Li H, Wang Z, Xie X, Luo M, Shen H, Li X, Li H, Wang Z, Li X, Chen G (2023) Peroxiredoxin-3 plays a neuroprotective role in early brain injury after experimental subarachnoid hemorrhage in rats. Brain Res Bull 193:95–105

    Article  CAS  PubMed  Google Scholar 

  29. Han Y-H, Feng L, Lee S-J, Zhang Y-Q, Wang A-G, Jin M-H, Sun H-N, Kwon T (2023) Depletion of peroxiredoxin II promotes keratinocyte apoptosis and alleviates psoriatic skin lesions via the PI3K/AKT/GSK3β signaling axis. Cell Death Discovery 9:263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Patel MN, Carroll RG, Galván-Peña S, Mills EL, Olden R, Triantafilou M, Wolf AI, Bryant CE, Triantafilou K, Masters SL (2017) Inflammasome priming in sterile inflammatory disease. Trends Mol Med 23:165–180

    Article  CAS  PubMed  Google Scholar 

  31. Chen S, Tang C, Ding H, Wang Z, Liu X, Chai Y, Jiang W, Han Y, Zeng H (2020) Maf1 ameliorates sepsis-associated encephalopathy by suppressing the NF-kB/NLRP3 inflammasome signaling pathway. Front Immunol 11:594071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Aoki Y, Dai H, Furuta F, Akamatsu T, Oshima T, Takahashi N, Goto Y-I, Oka A, Itoh M (2023) LOX-1 mediates inflammatory activation of microglial cells through the p38-MAPK/NF-κB pathways under hypoxic-ischemic conditions. Cell Commun Signal 21:126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Xiao A, Zhang Y, Ren Y, Chen R, Li T, You C, Gan X (2021) GDF11 alleviates secondary brain injury after intracerebral hemorrhage via attenuating mitochondrial dynamic abnormality and dysfunction. Sci Rep 11:3974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ding B-Y, Xie C-N, Xie J-Y, Gao Z-W, Fei X-W, Hong E-H, Chen W-J, Chen Y-Z (2023) Knockdown of NADPH oxidase 4 reduces mitochondrial oxidative stress and neuronal pyroptosis following intracerebral hemorrhage. Neural Regen Res 18:1734–1742

    CAS  PubMed  Google Scholar 

  35. Xie J, Hong E, Ding B, Jiang W, Zheng S, Xie Z, Tian D, Chen Y (2020) Inhibition of NOX4/ROS suppresses neuronal and blood-brain barrier injury by attenuating oxidative stress after intracerebral hemorrhage. Front Cell Neurosci 14:578060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chen X, Zhou Y, Wang S, Wang W (2022) Mechanism of baicalein in brain injury after intracerebral hemorrhage by inhibiting the ROS/NLRP3 inflammasome pathway. Inflammation 45:590–602

    Article  CAS  PubMed  Google Scholar 

  37. Jimenez-Blasco D, Almeida A, Bolaños JP (2023) Brightness and shadows of mitochondrial ROS in the brain. Neurobiol Dis 184:106199

    Article  CAS  PubMed  Google Scholar 

  38. Ghemrawi R, Khair M (2020) Endoplasmic reticulum stress and unfolded protein response in neurodegenerative diseases. Int J Mol Sci 21:6127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Marciniak SJ, Chambers JE, Ron D (2022) Pharmacological targeting of endoplasmic reticulum stress in disease. Nat Rev Drug Discovery 21:115–140

    Article  CAS  PubMed  Google Scholar 

  40. Wang H-X, Liu C, Li Y-Y, Cao Y, Zhao L, Zhao Y-J, Deng Z-A, Tong A-P, Zhou L-X (2023) TUG-891 inhibits neuronal endoplasmic reticulum stress and pyroptosis activation and protects neurons in a mouse model of intraventricular hemorrhage. Neural Regen Res 18:2278–2284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Marchi S, Patergnani S, Missiroli S, Morciano G, Rimessi A, Wieckowski MR, Giorgi C, Pinton P (2018) Mitochondrial and endoplasmic reticulum calcium homeostasis and cell death. Cell Calcium 69:62–72

    Article  CAS  PubMed  Google Scholar 

  42. Zeng J, Zheng S, Chen Y, Qu Y, Xie J, Hong E, Lv H, Ding R, Feng L, Xie Z (2021) Puerarin attenuates intracerebral hemorrhage-induced early brain injury possibly by PI3K/Akt signal activation-mediated suppression of NF-κB pathway. J Cell Mol Med 25:7809–7824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Shen D, Chen R, Zhang L, Rao Z, Ruan Y, Li L, Chu M, Zhang Y (2019) Sulodexide attenuates endoplasmic reticulum stress induced by myocardial ischaemia/reperfusion by activating the PI3K/Akt pathway. J Cell Mol Med 23:5063–5075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chen S, Peng J, Sherchan P, Ma Y, Xiang S, Yan F, Zhao H, Jiang Y, Wang N, Zhang JH, Zhang H (2020) TREM2 activation attenuates neuroinflammation and neuronal apoptosis via PI3K/Akt pathway after intracerebral hemorrhage in mice. J Neuroinflammation 17:168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by Heilongjiang Provincial Natural Science Foundation of China (LH2023C076). This research was supported by the National Research Council of Science & Technology (NST) grant by the Korea government (MSIT) (No. CCL23041-100, KRIBB-NTM2562311).

Funding

This research was supported by the Korea Research Institute of Bioscience and Biotechnology (KRIBB) Research Initiative Program (KGM5162423).

Author information

Authors and Affiliations

Authors

Contributions

MHJ, XDL contributed to the conception of the study. YHH and TK contributed to the execution of the experiment and data analysis. MHJ, XDL, HYX, TK, HNS and YHH performed the analysis and the quality assessment of the study. MHJ, XDL, YHH, and TK were responsible for the study design, writing the manuscript, and performing the literature search. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Ying-Hao Han or Taeho Kwon.

Ethics declarations

Competing interests

These authors declare no conflicts of interest.

Ethical statement

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, MH., Liu, XD., Sun, HN. et al. Peroxiredoxin II exerts neuroprotective effects by inhibiting endoplasmic reticulum stress and oxidative stress-induced neuronal pyroptosis. Mol Biol Rep 51, 607 (2024). https://doi.org/10.1007/s11033-024-09568-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11033-024-09568-5

Keywords

Navigation