Skip to main content
Log in

Physiological responses of European sea bass (Dicentrarchus labrax) exposed to increased carbon dioxide and reduced seawater salinities

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

The iono- and osmoregulatory capacities of marine teleosts, such as European sea bass (Dicentrarchus labrax) are expected to be challenged by high carbon dioxide exposure, and the adverse effects of elevated CO2 could be amplified when such fish migrate into less buffered hypo-osmotic estuarine environments. Therefore, the effects of increased CO2 on the physiological responses of European sea bass (Dicentrarchus labrax) acclimated to 32 ppt, 10 ppt and 2.5 ppt were investigated.

Methods

Following acclimation to different salinities for two weeks, fish were exposed to present-day (400 µatm) and future (1000 µatm) atmospheric CO2 for 1, 3, 7 and 21 days. Blood pH, plasma ions (Na+, K+, Cl-), branchial mRNA expression of ion transporters such as Na+/K+–ATPase (NKA), Na+/K+/2Cl co-transporters (NKCC) and ammonia transporters (e.g. Rhesus glycoproteins Rhbg, Rhcg1 and Rhcg2) were examined to understand the iono- and osmoregulatory consequences of elevated CO2.

Results

A transient but significant increase in the blood pH of exposed fish acclimated at 10 ppt (day 1) and 2.5 ppt (day 21) was observed possibly due to an overshoot of the blood HCO3 accumulation while a significant reduction of blood pH was observed after 21 days at 2.5ppt. However, no change was seen at 32 ppt. Generally, Na + concentration of control fish was relatively higher at 10 ppt and lower at 2.5 ppt compared to 32 ppt control group at all sampling periods. Additionally, NKA was upregulated in gill of juvenile sea bass when acclimated to lower salinities compared to 32 ppt control group. CO2 exposure generally downregulated NKA mRNA expression at 32ppt (day 1), 10 ppt (days 3, 7 and 21) and 2.5ppt (days 1 and 7) and also a significant reduction of NKCC mRNA level of the exposed fish acclimated at 32 ppt (1–3 days) and 10 ppt (7–21 days) was observed. Furthermore, Rhesus glycoproteins were generally upregulated in the fish acclimated at lower salinities indicating a higher dependance on gill ammonia excretion. Increased CO2 led to a reduced expression of Rhbg and may therefore reduce ammonia excretion rate.

Conclusion

Juvenile sea bass were relatively successful in keeping acid base balance under an ocean acidification scenario. However, this came at a cost for ionoregulation with reduced NKA, NKCC and Rhbg expression rates as a consequence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article and its supplementary information files.

Code availability

Not applicable.

References

  1. Doney SC (2010) The growing human footprint on coastal and open-ocean biogeochemistry. Science 328:1512–1516. https://doi.org/10.1126/science.1185198

    Article  CAS  PubMed  Google Scholar 

  2. Franke A, Clemmesen C (2011) Effect of ocean acidification on early life stages of Atlantic herring (Clupea harengus L). Biogeosciences Discuss 8:7097–7126. https://doi.org/10.5194/bg-8-3697-2011

    Article  CAS  Google Scholar 

  3. Lönnstedt OM, Munday PL, McCormick MI, Ferrari MCO, Chivers DP (2013) Ocean acidification and responses to predators: can sensory redundancy reduce the apparent impacts of elevated CO2 on fish? Ecol Evol. 3:3565–3575. https://doi.org/10.1002/ece3.684

  4. Bresolin de Souza K, Jutfelt F, Kling P, Förlin L, Sturve J (2014) Effects of increased CO2 on fish gill and plasma proteome. PLoS ONE 9:e102901. https://doi.org/10.1371/journal.pone.0102901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Green L, Jutfelt F (2014) Elevated carbon dioxide alters the plasma composition and behaviour of a shark. Biol Lett 10:20140538. https://doi.org/10.1098/rsbl.2014.0538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Azevedo LB, De Schryver AM, Hendriks AJ, Huijbregts MAJ (2015) Calcifying species sensitivity distributions for ocean acidification. Environ Sci Technol 49:1495–1500. https://doi.org/10.1021/es505485m

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Checkley DM, Dickson AG, Takahashi M, Radich JA, Eisenkolb N, Asch R (2009) Elevated CO2 enhances otolith growth in young fish. Science 324:1683. https://doi.org/10.1126/science.1169806

    Article  CAS  PubMed  Google Scholar 

  8. Doney SC, Fabry VJ, Feely RA, Kleypas JA (2009) Ocean Acidification: the other CO2 problem. Ann Rev Mar Sci 1:69–92. https://doi.org/10.1146/annurev.marine.010908.163834

    Article  Google Scholar 

  9. Logan CA (2010) A review of Ocean Acidification and America’s response. Bioscience 60:819–828. https://doi.org/10.1525/bio.2010.60.10.8

    Article  Google Scholar 

  10. Esbaugh AJ (2017) Physiological implications of ocean acidification for marine fish: emerging patterns and new insights. J Comp Physiol B 188:1–13. https://doi.org/10.1007/s00360-017-1105-6

    Article  CAS  PubMed  Google Scholar 

  11. Hurst TP, Fernandez ER, Mathis JT (2013) Effects of ocean acidification on hatch size and larval growth of walleye pollock (Theragra chalcogramma). ICES J Mar Sci 70:812–822. https://doi.org/10.1093/icesjms/fst053

    Article  Google Scholar 

  12. Kreiss CM, Michael K, Lucassen M, Jutfelt F, Motyka R, Dupont S, Pörtner HO (2015) Ocean warming and acidification modulate energy budget and gill ion regulatory mechanisms in Atlantic Cod (Gadus morhua). J Comp Physiol B Biochem Syst Environ Physiol 185:767–781. https://doi.org/10.1007/s00360-015-0923-7

    Article  CAS  Google Scholar 

  13. Kwan GT, Hamilton TJ, Tresguerres M (2017) CO2-induced ocean acidification does not affect individual or group behaviour in a temperate damselfish. R Soc Open Sci 4:170283. https://doi.org/10.1098/rsos.170283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. IPCC (2013) Summary for Policymakers. Clim Chang 2013 Phys Sci Basis Contrib Work Gr I to Fifth Assess Rep Intergov Panel Clim Chang 33

  15. Magill SH, Sayer MDJ (2004) The effect of reduced temperature and salinity on the blood physiology of juvenile Atlantic Cod. J Fish Biol 64:1193–1205. https://doi.org/10.1111/j.0022-1112.2004.00383.x

    Article  Google Scholar 

  16. Sinha AK, Dasan AF, Rasoloniriana R, Pipralia N, Blust R, De Boeck G (2015) Hypo-osmotic stress-induced physiological and ion-osmoregulatory responses in European sea bass (Dicentrarchus labrax) are modulated differentially by nutritional status. Comp Biochem Physiol -Part Mol Integr Physiol 181:87–99. https://doi.org/10.1016/j.cbpa.2014.11.024

    Article  CAS  Google Scholar 

  17. Sinha AK, Liew HJ, Diricx M, Blust R, De Boeck G (2012) The interactive effects of ammonia exposure, nutritional status and exercise on metabolic and physiological responses in gold fish (Carassius auratus L). Aquat Toxicol 109:33–46. https://doi.org/10.1016/j.aquatox.2011.11.002

    Article  CAS  PubMed  Google Scholar 

  18. Kultz D (2015) Physiological mechanisms used by fish to cope with salinity stress. J Exp Biol 218:1907–1914. https://doi.org/10.1242/jeb.118695

    Article  PubMed  Google Scholar 

  19. Edwards SL, Marshall WS (2012) Principles and patterns of osmoregulation and euryhalinity in fishes. In Fish physiology. Acad Press 32:1–44. https://doi.org/10.1016/B978-0-12-396951-4.00001-3

    Article  Google Scholar 

  20. Dixson DL, Munday PL, Jones GP (2010) Ocean acidification disrupts the innate ability of fish to detect predator olfactory cues. Ecol Lett 13:68–75. https://doi.org/10.1111/j.1461-0248.2009.01400.x

    Article  PubMed  Google Scholar 

  21. Baumann H, Talmage SC, Gobler CJ (2012) Reduced early life growth and survival in a fish in direct response to increased carbon dioxide. Nat Clim Chang 2:38–41. https://doi.org/10.1038/nclimate1291

    Article  CAS  Google Scholar 

  22. Briffa M, de la Haye K, Munday PL (2012) High CO2 and marine animal behaviour: potential mechanisms and ecological consequences. Mar Pollut Bull 64:1519–1528. https://doi.org/10.1016/j.marpolbul.2012.05.032

    Article  CAS  PubMed  Google Scholar 

  23. Frommel AY, Maneja R, Lowe D, Malzahn AM et al (2012) Severe tissue damage in Atlantic Cod larvae under increasing ocean acidification. Nat Clim Chang 2:42–46. https://doi.org/10.1038/nclimate1324

    Article  CAS  Google Scholar 

  24. Jutfelt F, Bresolin de Souza K, Vuylsteke A, Sturve J (2013) Behavioural disturbances in a temperate fish exposed to sustained high-CO2 levels. PLoS ONE 8:6–11. https://doi.org/10.1371/journal.pone.0065825

    Article  CAS  Google Scholar 

  25. Heuer RM, Grosell M (2014) Physiological impacts of elevated carbon dioxide and ocean acidification on fish. AJP Regul Integr Comp Physiol 307:R1061–R1084. https://doi.org/10.1152/ajpregu.00064.2014

    Article  CAS  Google Scholar 

  26. Ishimatsu A, Kikkawa T, Hayashi M, Lee KS, Kita J (2004) Effects of CO2 on Marine Fish: larvae and adults. J Oceanogr 60:731–741. https://doi.org/10.1007/s10872-004-5765-y

    Article  CAS  Google Scholar 

  27. Evans DH, Piermarini PM, Choe KP (2005) The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste. Physiol Rev 85:97–177. https://doi.org/10.1152/physrev.00050.2003

    Article  CAS  PubMed  Google Scholar 

  28. Ishimatsu A, Hayashi M, Lee KS, Kikkawa T, Kita J (2005) Physiological effects on fishes in a high-CO2 world. J Geophys Res C Ocean 110:1–8. https://doi.org/10.1029/2004JC002564

    Article  CAS  Google Scholar 

  29. Zadunaisky JA (1996) Chloride cells and osmoregulation. Kidney Int 49(6):1563–1567. https://doi.org/10.1038/ki.1996.225

    Article  CAS  PubMed  Google Scholar 

  30. Claiborne JB, Edwards SL, Morrison-Shetlar AI (2002) Acid-base regulation in fishes: cellular and molecular mechanisms. J Exp Zool 293:302–319. https://doi.org/10.1002/jez.10125

    Article  CAS  PubMed  Google Scholar 

  31. Perry SF, Gilmour KM (2006) Acid-base balance and CO2 excretion in fish: unanswered questions and emerging models. Respir Physiol Neurobiol 154:199–215. https://doi.org/10.1016/j.resp.2006.04.010

    Article  CAS  PubMed  Google Scholar 

  32. Shrivastava J, Ndugwa M, Caneos W, De Boeck G (2019) Physiological trade-offs, acid-base balance and ion-osmoregulatory plasticity in European sea bass (Dicentrarchus labrax) juveniles under complex scenarios of salinity variation, ocean acidification and high ammonia challenge. Aquat Toxicol 212:54–69. https://doi.org/10.1016/j.aquatox.2019.04.024

    Article  CAS  PubMed  Google Scholar 

  33. Marshall WS, Grosell M (2006) Ion transport, osmoregulation, and acid–base balance. Physiol Fishes 3:179–214

    Google Scholar 

  34. Hiroi J, Yasumasu S, Mccormick SD, Hwang P, Kaneko T (2008) Evidence for an apical Na–Cl cotransporter involved in ion uptake in a teleost fish. 2584–2599. https://doi.org/10.1242/jeb.018663

  35. Hsu H, Lin L, Tseng Y (2014) A new model for fish ion regulation: identification of ionocytes in freshwater- and seawater-acclimated medaka (Oryzias latipes). Cell Tissue Res 357:225–243. https://doi.org/10.1007/s00441-014-1883-z

    Article  CAS  PubMed  Google Scholar 

  36. Hwang PP, Lee TH, Lin LY (2011) Ion regulation in fish gills: recent progress in the cellular and molecular mechanisms. AJP Regul Integr Comp Physiol 301:R28–R47. https://doi.org/10.1152/ajpregu.00047.2011

    Article  CAS  Google Scholar 

  37. Hiroi J, Mccormick SD (2012) New insights into gill ionocyte and ion transporter function in euryhaline and diadromous fish. Respir Physiol Neurobiol 184:257–268. https://doi.org/10.1016/j.resp.2012.07.019

    Article  CAS  PubMed  Google Scholar 

  38. Louro B, Power DM, Canario AVM (2014) Advances in European sea bass genomics and future perspectives. Mar Genomics 18:71–75. https://doi.org/10.1016/j.margen.2014.06.010

    Article  PubMed  Google Scholar 

  39. Sinha AK, Rasoloniriana R, Dasan AF, Pipralia N, Blust R, De Boeck G (2015) Interactive effect of high environmental ammonia and nutritional status on ecophysiological performance of European sea bass (Dicentrarchus labrax) acclimated to reduced seawater salinities. Aquat Toxicol 160:39–56. https://doi.org/10.1016/j.aquatox.2015.01.005

    Article  CAS  PubMed  Google Scholar 

  40. Duteil M, Pope EC, Pérez-Escudero A, de Polavieja GG, Fürtbauer I, Brown MR, King AJ (2016) European sea bass show behavioural resilience to near-future ocean acidification. R Soc Open Sci 3:160656. https://doi.org/10.1098/rsos.160656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Jensen MK, Madsen SS, Kristiansen K (1998) Osmoregulation and salinity effects on the expression and activity of Na+,K(+)-ATPase in the gills of European sea bass, Dicentrarchus labrax (L). J Exp Zool 282:290–300. https://doi.org/10.1002/(SICI)1097-010X(19981015)282:3%3C290::AID-JEZ2%3E3.0.CO;2-H

    Article  CAS  PubMed  Google Scholar 

  42. Saroglia M, Caricato G, Frittella F, Brambilla F, Terova G (2010) Dissolved oxygen regimen (PO2) may affect osmo-respiratory compromise in European sea bass (Dicentrarchus labrax, L). Italian J Anim Sci 9(1):e15. https://doi.org/10.4081/10.4081/ijas.2010.e15

    Article  Google Scholar 

  43. Barnabe G, Boulineau-Coatanea F, Rene F (1976) Chronology of morphogenesis in Dicentrarchus labrax (L.) (Pisces, Serranidae) obtained by artificial reproduction. Aquaculture 8:351–363. https://doi.org/10.1016/0044-8486(76)90117-4

    Article  Google Scholar 

  44. Fiol DF, Kültz D (2007) Osmotic stress sensing and signaling in fishes. FEBS J 274:5790–5798. https://doi.org/10.1111/j.1742-4658.2007.06099.x

    Article  CAS  PubMed  Google Scholar 

  45. Giffard-Mena I, Lorin-Nebel C, Charmantier G, Castille R, Boulo V (2008) Adaptation of the sea-bass (Dicentrarchus labrax) to fresh water: role of aquaporins and Na+/K+-ATPases. Comp Biochem Physiol A: Mol Integr Physiol 150(3):332–338. https://doi.org/10.1016/j.cbpa.2008.04.004

    Article  CAS  PubMed  Google Scholar 

  46. Lorin-Nebel C, Boulo V, Bodinier C, Charmantier G (2006) The Na+/K+/2Cl-cotransporter in the sea bass Dicentrarchus labrax during ontogeny: involvement in osmoregulation. J Exp Biol 209(24):4908–4922. https://doi.org/10.1242/jeb.02591

    Article  CAS  PubMed  Google Scholar 

  47. Blondeau-Bidet E, Hiroi J, Lorin-Nebel C (2019) Ion uptake pathways in European sea bass Dicentrarchus labrax. Gene 692:126–137. https://doi.org/10.1016/j.gene.2019.01.006

    Article  CAS  PubMed  Google Scholar 

  48. Hakim Y, Harpaz S, Uni Z (2009) Expression of brush border enzymes and transporters in the intestine of European sea bass (Dicentrarchus labrax) following food deprivation. Aquaculture 290(1–2):110–115. https://doi.org/10.1016/j.aquaculture.2009.02.008

    Article  CAS  Google Scholar 

  49. Geay F, Culi ESI, Corporeau C, Boudry P, Dreano Y, Corcos L et al (2010) Regulation of FADS2 expression and activity in European sea bass (Dicentrarchus labrax, L.) fed a vegetable diet. Comp Biochem Physiol B: Biochem Mol Biol 156(4):237–243. https://doi.org/10.1016/j.cbpb.2010.03.008

    Article  CAS  PubMed  Google Scholar 

  50. Heuer RM, Grosell M (2016) Elevated CO2 increases energetic cost and ion movement in the marine fish intestine. Sci Rep 6:1–8. https://doi.org/10.1038/srep34480

    Article  CAS  Google Scholar 

  51. Esbaugh AJ, Heuer R, Grosell M (2012) Impacts of ocean acidification on respiratory gas exchange and acid-base balance in a marine teleost. Opsanus beta. J Comp Physiol B Biochem Syst Environ Physiol 182:921–934. https://doi.org/10.1007/s00360-012-0668-5

    Article  CAS  Google Scholar 

  52. Pörtner HO, Langenbuch M, Reipschläger A (2004) Biological impact of Elevated Ocean CO2 concentrations: lessons from Animal Physiology and Earth History. J Oceanogr 60:705–718. https://doi.org/10.1007/s10872-004-5763-0

    Article  Google Scholar 

  53. Nilsson GE, Dixson DL, Domenici P, McCormick MI, Sørensen C, Watson SA, Munday PL (2012) Near-future carbon dioxide levels alter fish behaviour by interfering with neurotransmitter function. Nat Clim Chang 2:201–204. https://doi.org/10.1038/nclimate1352

    Article  CAS  Google Scholar 

  54. Toews DP, Holeton GF, Heisler N (1983) Regulation of the acid-base status during environmental hypercapnia in the marine teleost fish Conger conger. J Exp Biol 107:9–20. https://doi.org/10.1242/jeb.107.1.9

    Article  CAS  PubMed  Google Scholar 

  55. Brauner CJ, Baker DW (2009) Patterns of acid-base regulation during exposure to hypercarbia in fishes. In Cardio-Respiratory Control in Vertebrates: Comparative and Evolutionary Aspects. 43–63. https://doi.org/10.1007/978-3-540-93985-6_3

  56. Esbaugh AJ, Ern R, Nordi WM, Johnson AS (2016) Respiratory plasticity is insufficient to alleviate blood acid–base disturbances after acclimation to ocean acidification in the estuarine red drum, Sciaenops ocellatus. J Comp Physiol B Biochem Syst Environ Physiol 186:97–109. https://doi.org/10.1007/s00360-015-0940-6

    Article  CAS  Google Scholar 

  57. Munday PL, Dixson DL, Donelson JM, Jones GP, Pratchett MS, Devitsina GV, Døving KB (2009) Ocean acidification impairs olfactory discrimination and homing ability of a marine fish. Proc Natl Acad Sci 106:1848–1852. https://doi.org/10.1073/pnas.0809996106

    Article  PubMed  PubMed Central  Google Scholar 

  58. Ferrari MCO, McCormick MI, Munday PL, Meekan MG, Dixson DL, Lönnstedt O, Chivers DP (2012) Effects of ocean acidification on visual risk assessment in coral reef fishes. Funct Ecol 26:553–558. https://doi.org/10.1111/j.1365-2435.2011.01951.x

    Article  Google Scholar 

  59. Simpson SD, Munday PL, Wittenrich ML, Manassa R, Dixson DL, Gagliano M, Yan HY (2011) Ocean acidification erodes crucial auditory behaviour in a marine fish. Biol Lett 7:917–920. https://doi.org/10.1098/rsbl.2011.0293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Cripps IL, Munday PL, McCormick MI (2011) Ocean acidification affects prey detection by a predatory reef fish. PLoS ONE 6. https://doi.org/10.1371/journal.pone.0022736

  61. Domenici P, Allan B, McCormick MI, Munday PL (2012) Elevated carbon dioxide affects behavioural lateralization in a coral reef fish. Biol Lett 8:78–81. https://doi.org/10.1098/rsbl.2011.0591

    Article  CAS  PubMed  Google Scholar 

  62. Petochi T, Di Marco P, Priori A, Finoia MG, Mercatali I, Marino G (2011) Coping strategy and stress response of European sea bass Dicentrarchus labrax to acute and chronic environmental hypercapnia under hyperoxic conditions. Aquaculture 315:312–320. https://doi.org/10.1016/j.aquaculture.2011.02.028

    Article  Google Scholar 

  63. Heisler N (1984) Acid-base regulation in fishes. Fish Physiol Acad Press 10:315–401

    Article  Google Scholar 

  64. Lin YM, Chen CN, Lee TH (2003) The expression of gill na, K-ATPase in milkfish, Chanos chanos, acclimated to seawater, brackish water and fresh water. Comp Biochem Physiol A: Mol Integr Physiol 135(3):489–497. https://doi.org/10.1016/S1095-6433(03)00136-3

    Article  CAS  PubMed  Google Scholar 

  65. Lin CH, Lee TH (2005) Sodium or potassium ions activate different kinetics of gill na, K-ATPase in three seawater‐and freshwater‐acclimated euryhaline teleosts. J Experimental Zool Part A: Comp Experimental Biology 303(1):57–65. https://doi.org/10.1002/jez.a.130

    Article  CAS  Google Scholar 

  66. Nawata CM, Wood CM, O’Donnell MJ (2010) Functional characterization of Rhesus glycoproteins from an ammoniotelic teleost, the rainbow trout, using oocyte expression and SIET analysis. J Exp Biol 213:1049–1059. https://doi.org/10.1242/jeb.038752

    Article  CAS  PubMed  Google Scholar 

  67. Rimoldi S, Terova G, Brambilla F, Bernardini G, Gornati R, Saroglia M (2009) Molecular characterization and expression analysis of Na+/H + exchanger (NHE)-1 and c-Fos genes in sea bass (Dicentrarchus labrax, L) exposed to acute and chronic hypercapnia. J Exp Mar Biol Ecol 375(1–2):32–40. https://doi.org/10.1016/j.jembe.2009.05.002

    Article  CAS  Google Scholar 

  68. Nakada T, Westhoff CM, Kato A, Hirose S (2007) Ammonia secretion from fish gill depends on a set of Rh glycoproteins. FASEB J 21:1067–1074. https://doi.org/10.1096/fj.06-6834com

    Article  CAS  PubMed  Google Scholar 

  69. Nawata CM, Hirose S, Nakada T, Wood CM, Kato A (2010) Rh glycoprotein expression is modulated in pufferfish (Takifugu rubripes) during high environmental ammonia exposure. J Exp Biol 213:3150–3160. https://doi.org/10.1242/jeb.044719

    Article  CAS  PubMed  Google Scholar 

  70. Cooper CA, Wilson JM, Wright PA (2013) Marine, freshwater and aerially acclimated mangrove rivulus (Kryptolebias Marmoratus) use different strategies for cutaneous ammonia excretion. Am J Physiol Integr Comp Physiol 304:R599–R612. https://doi.org/10.1152/ajpregu.00228.2012

    Article  CAS  Google Scholar 

  71. Wright PA, Wood CM (2009) A new paradigm for ammonia excretion in aquatic animals: role of Rhesus (Rh) glycoproteins. J Exp Biol 212:2303–2312. https://doi.org/10.1242/jeb.023085

    Article  CAS  PubMed  Google Scholar 

  72. Tseng Y, Hu MY, Stumpp M, Lin L, Melzner F, Hwang P (2013) CO2-driven seawater acidification differentially affects development and molecular plasticity along life history of fish (Oryzias latipes). Comp Biochem Physiol Part A 165:119–130. https://doi.org/10.1016/j.cbpa.2013.02.005

    Article  CAS  Google Scholar 

  73. Braun MH, Steele SL, Ekker M, Perry SF (2009) Nitrogen excretion in developing zebrafish (Danio rerio): a role for rh proteins and urea transporters. AJP Ren Physiol 296:F994–F1005. https://doi.org/10.1152/ajprenal.90656.2008

    Article  CAS  Google Scholar 

  74. Sinha AK, Giblen T, AbdElgawad H, De Rop M, Asard H, Blust R, De Boeck G (2013) Regulation of amino acid metabolism as a defensive strategy in the brain of three freshwater teleosts in response to high environmental ammonia exposure. Aquat Toxicol 130–131:86–96. https://doi.org/10.1016/j.aquatox.2013.01.003

    Article  CAS  PubMed  Google Scholar 

  75. Nawata CM, Hung CCY, Tsui TKN, Wilson JM, Wright PA, Wood CM (2007) Ammonia excretion in rainbow trout (Oncorhynchus mykiss): evidence for Rh glycoprotein and H+-ATPase involvement. Physiol Genomics 31:463–474. https://doi.org/10.1152/physiolgenomics.00061.2007

    Article  CAS  PubMed  Google Scholar 

  76. Hung CYC, Tsui KNT, Wilson JM, Nawata CM, Wood CM, Wright PA (2007) Rhesus glycoprotein gene expression in the mangrove killifish Kryptolebias Marmoratus exposed to elevated environmental ammonia levels and air. J Exp Biol 210:2419–2429. https://doi.org/10.1242/jeb.002568

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Steven Joosen, Prof. Raewyn Town and Dr. Amit Kumar Sinha for the technical assistance and data analysis and interpretation. Grateful acknowledgment is also given to Systemic Physiological and Ecotoxicological Research (SPHERE) research group.

Funding

This study was funded by a PhD Grant (BOF-DOCPRO-31444) from the University of Antwerp Research Council awarded to J. Shrivastava. W. Caneos is a recipient of Vlaamse Interuniversitaire Raad - Universitaire Ontwikkelingssamenwerking (VLIR-UOS) scholarship.

Author information

Authors and Affiliations

Authors

Contributions

J.S. and G.D.B. conceptualized the project and acquired the research funding. W.C., J.S., M.N. and G.D.B. developed the materials and methods, conducted the experiment and processed the samples. J.S. and G.D.B. managed project administration and supervised the project. W.C. analyzed the data and generated the visuals. W.C. wrote the manuscript. All authors read, reviewed, and approved the final manuscript.

Corresponding author

Correspondence to Warren G. Caneos.

Ethics declarations

Ethics approval

All procedures related to animal handling, exposure and sampling were approved by the local ethics committee of the University of Antwerp (ECD 2014-23) and performed according to the guidelines of the Federation of European Laboratory Animal Science Associations.

Consent to participate

All authors gave their consent to participate.

Consent for publication

All authors gave their consent to publish this manuscript.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caneos, W.G., Shrivastava, J., Ndugwa, M. et al. Physiological responses of European sea bass (Dicentrarchus labrax) exposed to increased carbon dioxide and reduced seawater salinities. Mol Biol Rep 51, 496 (2024). https://doi.org/10.1007/s11033-024-09460-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11033-024-09460-2

Keywords

Navigation