Skip to main content

Advertisement

Log in

Impacts of ocean acidification on respiratory gas exchange and acid–base balance in a marine teleost, Opsanus beta

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

The oceanic carbonate system is changing rapidly due to rising atmospheric CO2, with current levels expected to rise to between 750 and 1,000 μatm by 2100, and over 1,900 μatm by year 2300. The effects of elevated CO2 on marine calcifying organisms have been extensively studied; however, effects of imminent CO2 levels on teleost acid–base and respiratory physiology have yet to be examined. Examination of these physiological processes, using a paired experimental design, showed that 24 h exposure to 1,000 and 1,900 μatm CO2 resulted in a characteristic compensated respiratory acidosis response in the gulf toadfish (Opsanus beta). Time course experiments showed the onset of acidosis occurred after 15 min of exposure to 1,900 and 1,000 μatm CO2, with full compensation by 2 and 4 h, respectively. 1,900-μatm exposure also resulted in significantly increased intracellular white muscle pH after 24 h. No effect of 1,900 μatm was observed on branchial acid flux; however, exposure to hypercapnia and HCO3 free seawater compromised compensation. This suggests branchial HCO3 uptake rather than acid extrusion is part of the compensatory response to low-level hypercapnia. Exposure to 1,900 μatm resulted in downregulation in branchial carbonic anhydrase and slc4a2 expression, as well as decreased Na+/K+ ATPase activity after 24 h of exposure. Infusion of bovine carbonic anhydrase had no effect on blood acid–base status during 1,900 μatm exposures, but eliminated the respiratory impacts of 1,000 μatm CO2. The results of the current study clearly show that predicted near-future CO2 levels impact respiratory gas transport and acid–base balance. While the full physiological impacts of increased blood HCO3 are not known, it seems likely that chronically elevated blood HCO3 levels could compromise several physiological systems and furthermore may explain recent reports of increased otolith growth during exposure to elevated CO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Albright R, Mason B, Miller M, Langdon C (2010) Ocean acidification compromises recruitment success of the threatened Caribbean coral Acropora palmata. Proc Natl Acad Sci USA 107:20400–20404

    Article  PubMed  CAS  Google Scholar 

  • Anthony KR, Kline DI, Diaz-Pulido G, Dove S, Hoegh-Guldberg O (2008) Ocean acidification causes bleaching and productivity loss in coral reef builders. Proc Natl Acad Sci USA 105:17442–17446

    Article  PubMed  CAS  Google Scholar 

  • Baker DW, Matey V, Huynh KT, Wilson JM, Morgan JD, Brauner CJ (2009) Complete intracellular pH protection during extracellular pH depression is associated with hypercarbia tolerance in white sturgeon, Acipenser transmontanus. Am J Physiol Regul Integr Comp Physiol 296:R1868–R1880

    Article  PubMed  CAS  Google Scholar 

  • Baumann H, Talmage SC, Gobler CJ (2012) Reduced early life growth and survival in a fish in direct response to increased carbon dioxide. Nature Climate Change. doi:10.1038/CLIMATE1291

  • Boutilier RG, Heming TA, Iwama GK (1984) Physiochemical parameters for use in fish respiratory physiology. In: Hoar WS, Randall DJ (eds) Fish physiology. Academic Press, New York, pp 403–430

    Google Scholar 

  • Brauner CJ, Baker DW (2009) Patterns of acid-base regulation during exposure to hypercarbia in fishes. In: Glass ML, Wood SC (eds) Cardio-respiratory control in vertebrates: comparative and evolutionary aspects. Springer, Berlin

    Google Scholar 

  • Brauner CJ, Wang T, Wang Y, Richards JG, Gonzalez RJ, Bernier NJ, Xi W, Patrick A, Va AL (2004) Limited extracellular but complete intracellular acid-base regulation during short-term environmental hypercapnia in the armoured catfish, Liposarcus pardalis. J Exp Biol 207:3381–3390

    Article  PubMed  CAS  Google Scholar 

  • Cai WJ (2011) Estuarine and coastal ocean carbon paradox: CO(2) sinks or sites of terrestrial carbon incineration? Ann Rev Marine Sci 3(3):123–145

    Article  Google Scholar 

  • Caldeira K, Wickett ME (2003) Oceanography: anthropogenic carbon and ocean pH. Nature 425:365

    Article  PubMed  CAS  Google Scholar 

  • Cameron JN, Kormanik GA (1982) Intracellular and extracellular acid-base status as a function of temperature in the freshwater channel catfish, Ictalurus punctatus. J Exp Biol 99:127–142

    PubMed  CAS  Google Scholar 

  • Checkley DM Jr, Dickson AG, Takahashi M, Radich JA, Eisenkolb N, Asch R (2009) Elevated CO2 enhances otolith growth in young fish. Science 324:1683

    Article  PubMed  CAS  Google Scholar 

  • Claiborne JB, Edwards SL, Morrison-Shetlar AI (2002) Acid-base regulation in fishes: cellular and molecular mechanisms. J Exp Zool 293:302–319

    Article  PubMed  CAS  Google Scholar 

  • Deigweiher K, Koschnick N, Portner HO, Lucassen M (2008) Acclimation of ion regulatory capacities in gills of marine fish under environmental hypercapnia. Am J Physiol Reg Int Comp Physiol 295:R1660–R1670

    Article  CAS  Google Scholar 

  • Desforges PR, Gilmour KM, Perry SF (2001) The effects of exogenous extracellular carbonic anhydrase on CO2 excretion in rainbow trout (Oncorhynchus mykiss): role of plasma buffering capacity. J Comp Physiol B 171:465–473

    Article  PubMed  CAS  Google Scholar 

  • Desforges PR, Harman SS, Gilmour KM, Perry SF (2002) Sensitivity of CO2 excretion to blood flow changes in trout is determined by carbonic anhydrase availability. Am J Physiol Reg Int Comp Physiol 282:R501–R508

    CAS  Google Scholar 

  • Dixson DL, Munday PL, Jones GP (2010) Ocean acidification disrupts the innate ability of fish to detect predator olfactory cues. Ecol Lett 13:68–75

    Article  PubMed  Google Scholar 

  • Esbaugh AJ, Tufts BL (2006) The structure and function of carbonic anhydrase isozymes in the respiratory system of vertebrates. Respir Physiol Neurobiol 154:185–198

    Article  PubMed  CAS  Google Scholar 

  • Esbaugh AJ, Perry SF, Bayaa M, Georgalis T, Nickerson J, Tufts BL, Gilmour KM (2005) Cytoplasmic carbonic anhydrase isozymes in rainbow trout Oncorhynchus mykiss: comparative physiology and molecular evolution. J Exp Biol 208:1951–1961

    Article  PubMed  CAS  Google Scholar 

  • Fabry VJ (2008) Ocean science. Marine calcifiers in a high-CO2 ocean. Science 320:1020–1022

    Article  PubMed  CAS  Google Scholar 

  • Feely RA, Sabine CL, Hernandez-Ayon JM, Ianson D, Hales B (2008) Evidence for upwelling of corrosive “acidified” water onto the continental shelf. Science 320:1490–1492

    Article  PubMed  CAS  Google Scholar 

  • Feely RA, Alin SR, Newton J, Sabine CL, Warner M, Devol A, Krembs C, Maloy C (2010) The combined effects of ocean acidification, mixing, and respiration on pH and carbonate saturation in an urbanized estuary. Estuar Coast Shelf Sci 88:442–449

    Article  CAS  Google Scholar 

  • Ferrari MCO, Dixson DL, Munday PL, McCormick MI, Meekan MG, Sih A, Chivers DP (2011a) Intrageneric variation in antipredator responses of coral reef fishes affected by ocean acidification: implications for climate change projections on marine communities. Glob Change Biol 17:2980–2986

    Article  Google Scholar 

  • Ferrari MCO, McCormick MI, Munday PL, Meekan MG, Dixson DL, Lonnstedt O, Chivers DP (2011b) Putting prey and predator into the CO(2) equation—qualitative and quantitative effects of ocean acidification on predator-prey interactions. Ecol Lett 14:1143–1148

    Article  PubMed  Google Scholar 

  • Frommel A, Maneja R, Lowe D, Malzahn AM, Geffen AJ, Folkvord A, Piatkowski U, Reusch TBH, Clemmesen C (2012) Severe tissue damage in Atlantic cod larvae under increasing ocean acidification. Nature Climate Change 2:42–46

    Article  CAS  Google Scholar 

  • Genz J, Taylor JR, Grosell M (2008) Effects of salinity on intestinal bicarbonate secretion and compensatory regulation of acid-base balance in Opsanus beta. J Exp Biol 211:2327–2335

    Article  PubMed  CAS  Google Scholar 

  • Genz J, McDonald MD, Grosell M (2011) Concentration of MgSO4 in the intestinal lumen of Opsanus beta limits osmoregulation in response to acute hypersalinity stress. Am J Physiol Regul Integr Comp Physiol 300:R895–R909

    Article  PubMed  CAS  Google Scholar 

  • Gilmour KM, Perry SF (1994) The effects of hypoxia, hyperoxia or hypercapnia on the acid-base disequilibrium in the arterial blood of rainbow trout. J Exp Biol 192:269–284

    PubMed  Google Scholar 

  • Gilmour KM, Perry SF (2006) Branchial chemoreceptor regulation of cardiorespiratory function. In: Hara T, Zielinski B (eds) Fish physiology: sensory systems neuroscience, vol 25. Academic Press, San Diego, pp 97–151

    Chapter  Google Scholar 

  • Gilmour KM, Perry SF (2009) Carbonic anhydrase and acid-base regulation in fish. J Exp Biol 212:1647–1661

    Article  PubMed  CAS  Google Scholar 

  • Gilmour KM, Perry SF, Esbaugh AJ, Genz J, Taylor JR, Grosell M (2011) Compensatory regulation of acid-base balance during salinity transfer in rainbow trout (Oncorhynchus mykiss). J Comp Physiol B 182(2):259–274

    Article  PubMed  Google Scholar 

  • Grosell M, Mager EM, Williams C, Taylor JR (2009) High rates of HCO3 secretion and Cl absorption against adverse gradients in the marine teleost intestine: the involvement of an electrogenic anion exchanger and H+-pump metabolon? J Exp Biol 212:1684–1696

    Article  PubMed  CAS  Google Scholar 

  • Guffey S, Esbaugh A, Grosell M (2011) Regulation of apical H+-ATPase activity and intestinal HCO3 secretion in marine fish osmoregulation. Am J Physiol Regul Integr Comp Physiol 301(6):R1682–R1691

    Article  PubMed  CAS  Google Scholar 

  • Guinotte JM, Fabry VJ (2008) Ocean acidification and its potential effects on marine ecosystems. Ann NY Acad Sci 1134:320–342

    Article  PubMed  CAS  Google Scholar 

  • Henry RP (1991) Techniques for measuring carbonic anhydrase activity in vitro. In: Dodgson SJ, Tashian RE, Gros G, Carter ND (eds) The carbonic anhydrases: cellular pysiology and molecular genetics. Plenum, New York, pp 119–131

    Google Scholar 

  • Hill AG (1973) Acid-base balance: chemistry, physiology, pathophysiology. Williams and Wilkins, Baltimore

    Google Scholar 

  • Iglesias-Rodriguez MD, Halloran PR, Rickaby RE, Hall IR, Colmenero-Hidalgo E, Gittins JR, Green DR, Tyrrell T, Gibbs SJ, von Dassow P, Rehm E, Armbrust EV, Boessenkool KP (2008) Phytoplankton calcification in a high-CO2 world. Science 320:336–340

    Article  PubMed  CAS  Google Scholar 

  • Ivanis G, Esbaugh AJ, Perry SF (2008) Branchial expression and localization of SLC9A2 and SLC9A3 sodium/hydrogen exchangers and their possible role in acid-base regulation in freshwater rainbow trout (Oncorhynchus mykiss). J Exp Biol 211:2467–2477

    Article  PubMed  CAS  Google Scholar 

  • Julio AE, Desforges PR, Perry SF (2000) Apparent diffusion limitations for CO2 excretion in rainbow trout are relieved by injections of carbonic anhydrase. Respir Physiol 121:53–64

    Article  PubMed  CAS  Google Scholar 

  • Lin H, Randall DJ (1993) H+-ATPase activity in crude homogenates of fish gill tissue: inhibitor sensitivity and environmental and hormonal regulation. J Exp Biol 180:163–174

    CAS  Google Scholar 

  • Lloyd R, White WR (1967) Effect of high concentration of carbon dioxide on ionic composition of rainbow trout blood. Nature 216:1341–1342

    Article  CAS  Google Scholar 

  • Marshall WS (2002) Na+, Cl, Ca2+ and Zn2+ transport by fish gills: retrospective review and prospective synthesis. J Exp Zool 293:264–283

    Article  PubMed  CAS  Google Scholar 

  • Marshall WS, Grosell M (2006) Ion transport, osmoregulation, and acid-base balance. In: Evans DH, Claiborne JB (eds) The physiology of fishes, 3rd edn. Taylor and Francis Group, New York, pp 177–230

    Google Scholar 

  • McCormick SD, Bern HA (1989) In vitro stimulation of Na+-K+-ATPase activity and ouabain binding by cortisol in coho salmon gill. Am J Physiol 256:R707–R715

    PubMed  CAS  Google Scholar 

  • McDonald MD, Grosell M, Wood CM, Walsh PJ (2003) Branchial and renal handling of urea in the gulf toadfish, Opsanus beta: the effect of exogenous urea loading. Comp Biochem Physiol A: Mol Integr Physiol 134:763–776

    Article  Google Scholar 

  • McKenzie DJ, Taylor EW, Dalla Valle AZ, Steffensen JF (2002) Tolerance of acute hypercapnic acidosis by the European eel (Anguilla anguilla). J Comp Physiol B 172:339–346

    Article  PubMed  CAS  Google Scholar 

  • McKenzie DJ, Piccolella M, Dalla Valle AZ, Taylor EW, Bolis CL, Steffensen JF (2003) Tolerance of chronic hypercapnia by the European eel Anguilla anguilla. J Exp Biol 206:1717–1726

    Article  PubMed  CAS  Google Scholar 

  • Miller AW, Reynolds AC, Sobrino C, Riedel GF (2009) Shellfish face uncertain future in high CO2 world: influence of acidification on oyster larvae calcification and growth in estuaries. PLoS ONE 4:e5661

    Article  PubMed  Google Scholar 

  • Munday PL, Crawley NE, Nilsson GE (2009a) Interacting effects of elevated temperature and ocean acidification on the aerobic performance of coral reef fishes. Marine Ecol Progress Ser 388:235–242

    Article  CAS  Google Scholar 

  • Munday PL, Dixson DL, Donelson JM, Jones GP, Pratchett MS, Devitsina GV, Doving KB (2009b) Ocean acidification impairs olfactory discrimination and homing ability of a marine fish. Proc Natl Acad Sci USA 106:1848–1852

    Article  PubMed  CAS  Google Scholar 

  • Munday PL, Dixson DL, McCormick MI, Meekan M, Ferrari MC, Chivers DP (2010) Replenishment of fish populations is threatened by ocean acidification. Proc Nat Acad Sci USA 107:12930–12934

    Article  PubMed  CAS  Google Scholar 

  • Nilsson GE, Dixson DL, Domenici P, McCormick MI, Sorensen C, Watson S, Munday PL (2012) Near-future carbon dioxide levels alter fish behaviour by interfering with neurotransmitter function. Nat Climate Change 2:201–204

    Article  CAS  Google Scholar 

  • Orr JC, Fabry VJ, Aumont O, Bopp L, Doney SC, Feely RA, Gnanadesikan A, Gruber N, Ishida A, Joos F, Key RM, Lindsay K, Maier-Reimer E, Matear R, Monfray P, Mouchet A, Najjar RG, Plattner GK, Rodgers KB, Sabine CL, Sarmiento JL, Schlitzer R, Slater RD, Totterdell IJ, Weirig MF, Yamanaka Y, Yool A (2005) Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437:681–686

    Article  PubMed  CAS  Google Scholar 

  • Perry SF (1986) Carbon dioxide excretion in fishes. Can J Zool 64:565–572

    Article  Google Scholar 

  • Perry SF, Gilmour KM (2006) Acid-base balance and CO2 excretion in fish: unanswered questions and emerging models. Respir Physiol Neurobiol 154:199–215

    Article  PubMed  CAS  Google Scholar 

  • Perry SF, McKendry JE (2001) The relative roles of external and internal CO2 versus H+ in eliciting the cardiorespiratory responses of Salmo salar and Squalus acanthias to hypercarbia. J Exp Biol 204:3963–3971

    PubMed  CAS  Google Scholar 

  • Perry SF, Furimsky M, Bayaa M, Georgalis T, Shahsavarani A, Nickerson JG, Moon TW (2003) Integrated responses of Na+/HCO3 cotransporters and V-type H+-ATPases in the fish gill and kidney during respiratory acidosis. Biochim Biophys Acta 1618:175–184

    Article  PubMed  CAS  Google Scholar 

  • Perry SF, Esbaugh A, Braun M, Gilmour KM (2009) Gas transport and gill function in water-breathing fish. In: Glass ML, Wood SC (eds) Cardio-respiratory control in vertebrates. Springer-Verlag, Berlin, pp 5–42

    Chapter  Google Scholar 

  • Perry SF, Braun MH, Genz J, Vulesevic B, Taylor J, Grosell M, Gilmour KM (2010) Acid-base regulation in the plainfin midshipman (Porichthys notatus): an aglomerular marine teleost. J Comp Physiol B 180:1213–1225

    Article  PubMed  CAS  Google Scholar 

  • Pfaffl MW (2001) A new mathmatical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:45

    Article  Google Scholar 

  • Portner HO, Boutilier RG, Tang Y, Toews DP (1990) Determination of intracellular pH and PCO2 after metabolic inhibition by fluoride and nitrilotriacetic acid. Respir Physiol 81:255–273

    Article  PubMed  CAS  Google Scholar 

  • Potts WT (1994) Kinetics of sodium uptake in freshwater animals: a comparison of ion-exchange and proton pump hypotheses. Am J Physiol 266:R315–R320

    PubMed  CAS  Google Scholar 

  • Romero MF, Fulton CM, Boron WF (2004) The SLC4 family of HCO3 transporters. Pflugers Arch 447:495–509

    Article  PubMed  CAS  Google Scholar 

  • Sattin G, Mager EM, Beltramini M, Grosell M (2010) Cytosolic carbonic anhydrase in the Gulf toadfish is important for tolerance to hypersalinity. Comp Biochem Physiol A: Mol Integr Physiol 156:169–175

    Article  CAS  Google Scholar 

  • Seidelin M, Brauner CJ, Jensen FB, Madsen SS (2001) Vacuolar-type H+-ATPase and Na+, K+-ATPase expression in gills of Atlantic salmon (Salmo salar) during isolated and combined exposure to hyperoxia and hypercapnia in fresh water. Zoolog Sci 18:1199–1205

    Article  PubMed  CAS  Google Scholar 

  • Siegenthaler U, Stocker TF, Monnin E, Luthi D, Schwander J, Stauffer B, Raynaud D, Barnola JM, Fischer H, Masson-Delmotte V, Jouzel J (2005) Stable carbon cycle-climate relationship during the Late Pleistocene. Science 310:1313–1317

    Article  PubMed  CAS  Google Scholar 

  • Simpson SD, Munday PL, Wittenrich ML, Manassa R, Dixson DL, Gagliano M, Yan HY (2011) Ocean acidification erodes crucial auditory behaviour in a marine fish. Biol Lett 7:917–920

    Article  PubMed  CAS  Google Scholar 

  • Sussman CR, Zhao JH, Plata C, Lu J, Daly C, Angle N, DiPiero J, Drummond IA, Liang JO, Boron WF, Romero MF, Chang MH (2009) Cloning, localization, and functional expression of the electrogenic Na+ bicarbonate cotransporter (NBCe1) from zebrafish. Am J Physiol Cell Physiol 297:C865–C875

    Article  PubMed  CAS  Google Scholar 

  • Talmage SC, Gobler CJ (2010) Effects of past, present, and future ocean carbon dioxide concentrations on the growth and survival of larval shellfish. Proc Natl Acad Sci USA 107:17246–17251

    Article  PubMed  CAS  Google Scholar 

  • Taylor JR, Mager EM, Grosell M (2010) Basolateral NBCe1 plays a rate-limiting role in transepithelial intestinal HCO3 secretion, contributing to marine fish osmoregulation. J Exp Biol 213:459–468

    Article  PubMed  CAS  Google Scholar 

  • Taylor JR, Cooper CA, Mommsen TP (2011) Implications of GI function for gas exchange, acid-base balance and nitrogen metabolism. In: Grosell M, Farrell AP, Brauner CJ (eds) Fish physiology. The multifunctional gut of fish, vol 30. Academic Press, New York, pp 214–261

    Google Scholar 

  • Thomsen J, Gutowska MA, Saphorster J, Heinemann A, Trubenbach K, Fietzke J, Hiebenthal C, Eisenhauer A, Kortzinger A, Wahl M, Melzner F (2010) Calcifying invertebrates succeed in a naturally CO2-rich coastal habitat but are threatened by high levels of future acidification. Biogeosciences 7:3879–3891

    Article  CAS  Google Scholar 

  • Tohse H, Mugiya Y (2001) Effects of enzyme and anion transport inhibitors on in vitro incorporation of inorganic carbon and calcium into endolymph and otoliths in salmon Oncorhynchus masou. Comp Biochem Physiol A: Mol Integr Physiol 128:177–184

    Article  CAS  Google Scholar 

  • Tufts BL, Perry SF (1998) Carbon dioxide transport and excretion: Fish physiology, Fish Respiration, vol 17. Academic Press, Toronto, pp 229–281

    Google Scholar 

  • Tzaneva V, Gilmour KM, Perry SF (2011) Respiratory responses to hypoxia or hypercapnia in goldfish (Carassius auratus) experiencing gill remodelling. Respir Physiol Neurobiol 175:112–120

    Article  PubMed  CAS  Google Scholar 

  • Verdouw H, van Echted CJA, Dekkers EMJ (1978) Ammonia determination based on indophenol formation with sodium salicylate. Water Res 12:399–402

    Article  CAS  Google Scholar 

  • Wood CM, Munger RS (1994) Carbonic anhydrase injection provides evidence for the role of blood acid-base status in stimulating ventilation after exhaustive exercise in rainbow trout. J Exp Biol 194:225–253

    PubMed  CAS  Google Scholar 

  • Wood C, Hopkins T, Walsh P (1997) Pulsatile urea excretion in the toadfish (Opsanus beta) is due to a pulsatile excretion mechanism, not a pulsatile production mechanism. J Exp Biol 200:1039–1046

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Financial support for this work was provided by a Natural Science Foundation grant to M. Grosell (IOS-0,743,903 and 1,146,695).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew J. Esbaugh.

Additional information

Communicated by I.D. Hume.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Esbaugh, A.J., Heuer, R. & Grosell, M. Impacts of ocean acidification on respiratory gas exchange and acid–base balance in a marine teleost, Opsanus beta . J Comp Physiol B 182, 921–934 (2012). https://doi.org/10.1007/s00360-012-0668-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-012-0668-5

Keywords

Navigation