Skip to main content

Advertisement

Log in

Roles of the cytoskeleton in human diseases

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Recently, researches have revealed the key roles of the cytoskeleton in the occurrence and development of multiple diseases, suggesting that targeting the cytoskeleton is a viable approach for treating numerous refractory diseases. The cytoskeleton is a highly structured and complex network composed of actin filaments, microtubules, and intermediate filaments. In normal cells, these three cytoskeleton components are highly integrated and coordinated. However, the cytoskeleton undergoes drastic remodeling in cytoskeleton-related diseases, causing changes in cell polarity, affecting the cell cycle, leading to senescent diseases, and influencing cell migration to accelerate cancer metastasis. Additionally, mutations or abnormalities in cytoskeletal proteins and their related proteins are closely associated with several congenital diseases. Therefore, this review summarizes the roles of the cytoskeleton in cytoskeleton-related diseases as well as its potential roles in disease treatment to provide insights regarding the physiological functions and pathological roles of the cytoskeleton.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Dolati S et al (2018) On the relation between filament density, force generation, and protrusion rate in mesenchymal cell motility. Mol Biol Cell 29(22):2674–2686. https://doi.org/10.1091/mbc.E18-02-0082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Meiring JCM, Shneyer BI, Akhmanova A (2020) Generation and regulation of microtubule network asymmetry to drive cell polarity. Curr Opin Cell Biol 62:86–95. https://doi.org/10.1016/j.ceb.2019.10.004

    Article  CAS  PubMed  Google Scholar 

  3. Etienne-Manneville S (2018) Cytoplasmic Intermediate Filaments in Cell Biology. Annu Rev Cell Dev Biol 34:1–28. https://doi.org/10.1146/annurev-cellbio-100617-062534

    Article  CAS  PubMed  Google Scholar 

  4. Moujaber O, Stochaj U (2020) The Cytoskeleton as Regulator of Cell Signaling Pathways. Trends Biochem Sci 45(2):96–107. https://doi.org/10.1016/j.tibs.2019.11.003

    Article  CAS  PubMed  Google Scholar 

  5. Kounakis K, Tavernarakis N (2019) The Cytoskeleton as a Modulator of Aging and Neurodegeneration. Adv Exp Med Biol 1178:227–245. https://doi.org/10.1007/978-3-030-25650-0_12

    Article  CAS  PubMed  Google Scholar 

  6. Bell SJ et al (2020) Congenital cataract: a guide to genetic and clinical management. Therapeutic Adv Rare Disease 1:2633004020938061. https://doi.org/10.1177/2633004020938061

    Article  Google Scholar 

  7. Musfee FI et al (2021) Common Variation in Cytoskeletal Genes is Associated with Conotruncal Heart Defects. Genes (Basel) 12(5). https://doi.org/10.3390/genes12050655

  8. Biró O, Rigó J Jr, Nagy B (2020) Noninvasive prenatal testing for congenital heart disease - cell-free nucleic acid and protein biomarkers in maternal blood. J Matern Fetal Neonatal Med 33(6):1044–1050. https://doi.org/10.1080/14767058.2018.1508437

    Article  CAS  PubMed  Google Scholar 

  9. Fan F et al (2020) The mutation spectrum in familial versus sporadic congenital cataract based on next-generation sequencing. BMC Ophthalmol 20(1):361. https://doi.org/10.1186/s12886-020-01567-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Papa R et al (2020) Actin Remodeling Defects Leading to Autoinflammation and Immune Dysregulation. Front Immunol 11:604206. https://doi.org/10.3389/fimmu.2020.604206

    Article  CAS  Google Scholar 

  11. Kloc M et al (2021) New Insights into Cellular Functions of Nuclear Actin. Biology (Basel) 10(4). https://doi.org/10.3390/biology10040304

  12. Dridi H et al (2021) Ryanodine receptor remodeling in cardiomyopathy and muscular dystrophy caused by lamin A/C gene mutation. Hum Mol Genet 29(24):3919–3934. https://doi.org/10.1093/hmg/ddaa278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Parker F, Baboolal TG, Peckham M (2020) Actin Mutations and Their Role in Disease. Int J Mol Sci 21(9). https://doi.org/10.3390/ijms21093371

  14. Denarier E et al (2021) Modeling a disease-correlated tubulin mutation in budding yeast reveals insight into MAP-mediated dynein function. Mol Biol Cell 32(20). ar10. https://doi.org/10.1091/mbc.E21-05-0237

  15. Romaniello R et al (2019) Epilepsy in Tubulinopathy: Personal Series and Literature Review. Cells 8(7). https://doi.org/10.3390/cells8070669

  16. Abdollahi MR et al (2009) Mutation of the variant alpha-tubulin TUBA8 results in polymicrogyria with optic nerve hypoplasia. Am J Hum Genet 85(5):737–744. https://doi.org/10.1016/j.ajhg.2009.10.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sferra A et al (2020) TUBB Variants Underlying Different Phenotypes Result in Altered Vesicle Trafficking and Microtubule Dynamics. Int J Mol Sci 21(4). https://doi.org/10.3390/ijms21041385

  18. Guillet B et al (2019) A Glanzmann thrombasthenia family associated with a TUBB1-related macrothrombocytopenia. J Thromb Haemost 17(12):2211–2215. https://doi.org/10.1111/jth.14622

    Article  CAS  PubMed  Google Scholar 

  19. Lohmann K et al (2013) Whispering dysphonia (DYT4 dystonia) is caused by a mutation in the TUBB4 gene. Ann Neurol 73(4):537–545. https://doi.org/10.1002/ana.23829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Maasz A et al (2022) TUBB4B gene mutation in Leber phenotype of congenital amaurosis syndrome associated with early-onset deafness. Eur J Med Genet 65(4):104471. https://doi.org/10.1016/j.ejmg.2022.104471

    Article  CAS  PubMed  Google Scholar 

  21. Yang P et al (2021) Mutation analysis of tubulin beta 8 class VIII in infertile females with oocyte or embryonic defects. Clin Genet 99(1):208–214. https://doi.org/10.1111/cge.13855

    Article  CAS  PubMed  Google Scholar 

  22. Shen R et al (2021) A novel TUBG1 mutation with neurodevelopmental disorder caused by malformations of cortical development Biomed Res Int, 2021: p. 6644274.https://doi.org/10.1155/2021/6644274

  23. Wu TT et al (2021) Genotype–Structurotype–Phenotype Correlations in Patients with Pachyonychia Congenita. J Invest Dermatol 141(12):2876–2884. https://doi.org/10.1016/j.jid.2021.03.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Osipowicz K et al (2021) Bullous diseases caused by KRT1 gene mutations: from epidermolytic hyperkeratosis to a novel variant of epidermolysis bullosa simplex. Postepy Dermatol Alergol 38(6):1032–1038. https://doi.org/10.5114/ada.2020.98564

    Article  PubMed  Google Scholar 

  25. Westin M et al (2018) Mutations in the genes for keratin-4 and keratin-13 in Swedish patients with white sponge nevus. J Oral Pathol Med 47(2):152–157. https://doi.org/10.1111/jop.12652

    Article  CAS  PubMed  Google Scholar 

  26. Ye J et al (2020) Keratin 8 Mutations Were Associated With Susceptibility to Chronic Hepatitis B and Related Progression. J Infect Dis 221(3):464–473. https://doi.org/10.1093/infdis/jiz467

    Article  CAS  PubMed  Google Scholar 

  27. Nishino T et al (2019) In vivo histology and p.L132V mutation in KRT12 gene in Japanese patients with Meesmann corneal dystrophy. Jpn J Ophthalmol 63(1):46–55. https://doi.org/10.1007/s10384-018-00643-6

    Article  PubMed  Google Scholar 

  28. Langer HT et al (2020) Generation of desminopathy in rats using CRISPR-Cas9. J Cachexia Sarcopenia Muscle 11(5):1364–1376. https://doi.org/10.1002/jcsm.12619

    Article  PubMed  PubMed Central  Google Scholar 

  29. Cenni V et al (2020) Lamin A involvement in ageing processes. Ageing Res Rev 62:101073. https://doi.org/10.1016/j.arr.2020.101073

    Article  CAS  PubMed  Google Scholar 

  30. Heaven MR et al (2019) Relative stabilities of wild-type and mutant glial fibrillary acidic protein in patients with Alexander disease. J Biol Chem 294(43):15604–15612. https://doi.org/10.1074/jbc.RA119.009777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Stone EJ, Kolb SJ, Brown A (2021) A review and analysis of the clinical literature on Charcot-Marie-Tooth disease caused by mutations in neurofilament protein L. Cytoskeleton (Hoboken) 78(3):97–110. https://doi.org/10.1002/cm.21676

    Article  CAS  PubMed  Google Scholar 

  32. Castellanos-Montiel MJ, Chaineau M, Durcan TM (2020) The Neglected Genes of ALS: Cytoskeletal Dynamics Impact Synaptic Degeneration in ALS. Front Cell Neurosci 14:594975. https://doi.org/10.3389/fncel.2020.594975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bajpai A, Li R, Chen W (2021) The cellular mechanobiology of aging: from biology to mechanics. Ann N Y Acad Sci 1491(1):3–24. https://doi.org/10.1111/nyas.14529

    Article  PubMed  Google Scholar 

  34. Schulze C et al (2012) Stiffening of human skin fibroblasts with age. Clin Plast Surg 39(1):9–20. https://doi.org/10.1016/j.cps.2011.09.008

    Article  PubMed  Google Scholar 

  35. Lai WF, Wong WT (2020) Roles of the actin cytoskeleton in aging and age-associated diseases. Ageing Res Rev 58:101021. https://doi.org/10.1016/j.arr.2020.101021

    Article  CAS  PubMed  Google Scholar 

  36. Heredia M et al (2019) Factors Involved in the Functional Motor Recovery of Rats with Cortical Ablation after GH and Rehabilitation Treatment: Cortical Cell Proliferation and Nestin and Actin Expression in the Striatum and Thalamus. Int J Mol Sci 20(22). https://doi.org/10.3390/ijms20225770

  37. Zheng Y et al (2020) Redox States of Protein Cysteines in Pathways of Protein Turnover and Cytoskeleton Dynamics Are Changed with Aging and Reversed by Slc7a11 Restoration in Mouse Lung Fibroblasts Oxid Med Cell Longev, 2020: p. 2468986.https://doi.org/10.1155/2020/2468986

  38. Sun B et al (2021) Actin polymerization state regulates osteogenic differentiation in human adipose-derived stem cells. Cell Mol Biol Lett 26(1):15. https://doi.org/10.1186/s11658-021-00259-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jones MC, Zha J, Humphries MJ (2019) Connections between the cell cycle, cell adhesion and the cytoskeleton. Philos Trans R Soc Lond B Biol Sci 374(1779):20180227. https://doi.org/10.1098/rstb.2018.0227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Nag TC, Kathpalia P, Wadhwa S (2020) Microtubule alterations may destabilize photoreceptor integrity: Age-related microtubule changes and pattern of expression of MAP-2, Tau and hyperphosphorylated Tau in aging human photoreceptor cells. Exp Eye Res 198:108153. https://doi.org/10.1016/j.exer.2020.108153

    Article  CAS  Google Scholar 

  41. Yu D et al (2013) Mechanical and functional properties of epothilone-stabilized microtubules. Cytoskeleton (Hoboken) 70(2):74–84. https://doi.org/10.1002/cm.21091

    Article  CAS  PubMed  Google Scholar 

  42. Moujaber O et al (2019) Cellular senescence is associated with reorganization of the microtubule cytoskeleton. Cell Mol Life Sci 76(6):1169–1183. https://doi.org/10.1007/s00018-018-2999-1

    Article  CAS  PubMed  Google Scholar 

  43. Gadadhar S et al (2017) The tubulin code at a glance. J Cell Sci 130(8):1347–1353. https://doi.org/10.1242/jcs.199471

    Article  CAS  PubMed  Google Scholar 

  44. Loirand G (2015) Rho Kinases in Health and Disease: From Basic Science to Translational Research. Pharmacol Rev 67(4):1074–1095. https://doi.org/10.1124/pr.115.010595

    Article  CAS  PubMed  Google Scholar 

  45. Goto H, Inagaki M (2014) New insights into roles of intermediate filament phosphorylation and progeria pathogenesis. IUBMB Life 66(3):195–200. https://doi.org/10.1002/iub.1260

    Article  CAS  PubMed  Google Scholar 

  46. Tsikitis M et al (2018) Intermediate filaments in cardiomyopathy. Biophys Rev 10(4):1007–1031. https://doi.org/10.1007/s12551-018-0443-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Aseervatham J (2020) Cytoskeletal Remodeling in Cancer. Biology (Basel) 9(11). https://doi.org/10.3390/biology9110385

  48. Fife CM, McCarroll JA, Kavallaris M (2014) Movers and shakers: cell cytoskeleton in cancer metastasis. Br J Pharmacol 171(24):5507–5523. https://doi.org/10.1111/bph.12704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Seetharaman S, Etienne-Manneville S (2020) Cytoskeletal Crosstalk in Cell Migration. Trends Cell Biol 30(9):720–735. https://doi.org/10.1016/j.tcb.2020.06.004

    Article  CAS  PubMed  Google Scholar 

  50. García-Padilla C et al (2022) New Insights into the Roles of lncRNAs as Modulators of Cytoskeleton Architecture and Their Implications in Cellular Homeostasis and in Tumorigenesis. Noncoding RNA 8(2). https://doi.org/10.3390/ncrna8020028

  51. Ruggiero C, Lalli E (2021) Targeting the cytoskeleton against metastatic dissemination. Cancer Metastasis Rev 40(1):89–140. https://doi.org/10.1007/s10555-020-09936-0

    Article  CAS  PubMed  Google Scholar 

  52. Svitkina T (2018) The Actin Cytoskeleton and Actin-Based Motility. Cold Spring Harb Perspect Biol 10(1). https://doi.org/10.1101/cshperspect.a018267

  53. Buracco S, Claydon S, Insall R (2019) Control of actin dynamics during cell motility F1000Res, 8.https://doi.org/10.12688/f1000research.18669.1

  54. Yamaguchi H, Oikawa T (2010) Membrane lipids in invadopodia and podosomes: key structures for cancer invasion and metastasis. Oncotarget 1(5):320–328. https://doi.org/10.18632/oncotarget.100907

    Article  PubMed  PubMed Central  Google Scholar 

  55. Li X, Wang J (2020) Mechanical tumor microenvironment and transduction: cytoskeleton mediates cancer cell invasion and metastasis. Int J Biol Sci 16(12):2014–2028. https://doi.org/10.7150/ijbs.44943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Torrino S et al (2021) Mechano-induced cell metabolism promotes microtubule glutamylation to force metastasis. Cell Metab 33(7):1342–1357. https://doi.org/10.1016/j.cmet.2021.05.009

    Article  CAS  PubMed  Google Scholar 

  57. Breuzard G et al (2019) Tau regulates the microtubule-dependent migration of glioblastoma cells via the Rho-ROCK signaling pathway. J Cell Sci 132(3). https://doi.org/10.1242/jcs.222851

  58. Chanez B et al (2021) EB1 Restricts Breast Cancer Cell Invadopodia Formation and Matrix Proteolysis via FAK. Cells 10(2). https://doi.org/10.3390/cells10020388

  59. Molina A et al (2013) ATIP3, a novel prognostic marker of breast cancer patient survival, limits cancer cell migration and slows metastatic progression by regulating microtubule dynamics. Cancer Res 73(9):2905–2915. https://doi.org/10.1158/0008-5472.Can-12-3565

    Article  CAS  PubMed  Google Scholar 

  60. Sharma P et al (2019) Intermediate Filaments as Effectors of Cancer Development and Metastasis: A Focus on Keratins, Vimentin, and Nestin. Cells 8(5). https://doi.org/10.3390/cells8050497

  61. Yoon S, Leube RE (2019) Keratin intermediate filaments: intermediaries of epithelial cell migration. Essays Biochem 63(5):521–533. https://doi.org/10.1042/ebc20190017

    Article  CAS  PubMed  Google Scholar 

  62. Satelli A, Li S (2011) Vimentin in cancer and its potential as a molecular target for cancer therapy. Cell Mol Life Sci 68(18):3033–3046. https://doi.org/10.1007/s00018-011-0735-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Usman S et al (2021) Vimentin Is at the Heart of Epithelial Mesenchymal Transition (EMT) Mediated Metastasis. Cancers (Basel) 13(19). https://doi.org/10.3390/cancers13194985

  64. Chan SH et al (2017) Oleate-induced PTX3 promotes head and neck squamous cell carcinoma metastasis through the up-regulation of vimentin. Oncotarget 8(25):41364–41378. https://doi.org/10.18632/oncotarget.17326

    Article  PubMed  PubMed Central  Google Scholar 

  65. Vuoso DC et al (2020) Annurca apple polyphenol extract promotes mesenchymal-to-epithelial transition and inhibits migration in triple-negative breast cancer cells through ROS/JNK signaling. Sci Rep 10(1):15921. https://doi.org/10.1038/s41598-020-73092-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Strouhalova K et al (2020) Vimentin Intermediate Filaments as Potential Target for Cancer Treatment. Cancers (Basel) 12(1). https://doi.org/10.3390/cancers12010184

  67. Kleeberger W et al (2007) Roles for the stem cell associated intermediate filament Nestin in prostate cancer migration and metastasis Cancer Res, 67(19): p. 9199 – 206.https://doi.org/10.1158/0008-5472.Can-07-0806

  68. Yamagishi A et al (2019) The Structural Function of Nestin in Cell Body Softening is Correlated with Cancer Cell Metastasis. Int J Biol Sci 15(7):1546–1556. https://doi.org/10.7150/ijbs.33423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Jung H et al (2016) Cytokeratin 18 is necessary for initiation of TGF-β1-induced epithelial-mesenchymal transition in breast epithelial cells. Mol Cell Biochem 423(1–2):21–28. https://doi.org/10.1007/s11010-016-2818-7

    Article  CAS  PubMed  Google Scholar 

  70. Kröger C et al (2019) Acquisition of a hybrid E/M state is essential for tumorigenicity of basal breast cancer cells. Proc Natl Acad Sci U S A 116(15):7353–7362. https://doi.org/10.1073/pnas.1812876116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Eira J et al (2016) The cytoskeleton as a novel therapeutic target for old neurodegenerative disorders. Prog Neurobiol 141:61–82. https://doi.org/10.1016/j.pneurobio.2016.04.007

    Article  CAS  PubMed  Google Scholar 

  72. Cairns NJ, Lee VM, Trojanowski JQ (2004) The cytoskeleton in neurodegenerative diseases. J Pathol 204(4):438–449. https://doi.org/10.1002/path.1650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Chidambaram SB et al (2019) Dendritic spines: Revisiting the physiological role. Prog Neuropsychopharmacol Biol Psychiatry 92:161–193. https://doi.org/10.1016/j.pnpbp.2019.01.005

    Article  CAS  PubMed  Google Scholar 

  74. Wang Q et al (2020) Role of Cofilin in Alzheimer’s Disease. Front Cell Dev Biol 8:584898. https://doi.org/10.3389/fcell.2020.584898

    Article  PubMed  PubMed Central  Google Scholar 

  75. Miazek A et al (2021) Age-dependent ataxia and neurodegeneration caused by an αII spectrin mutation with impaired regulation of its calpain sensitivity. Sci Rep 11(1):7312. https://doi.org/10.1038/s41598-021-86470-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Schiweck J et al (2021) Drebrin controls scar formation and astrocyte reactivity upon traumatic brain injury by regulating membrane trafficking. Nat Commun 12(1):1490. https://doi.org/10.1038/s41467-021-21662-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Unsain N et al (2018) Remodeling of the Actin/Spectrin Membrane-associated Periodic Skeleton, Growth Cone Collapse and F-Actin Decrease during Axonal Degeneration. Sci Rep 8(1):3007. https://doi.org/10.1038/s41598-018-21232-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Giampetruzzi A et al (2019) Modulation of actin polymerization affects nucleocytoplasmic transport in multiple forms of amyotrophic lateral sclerosis. Nat Commun 10(1):3827. https://doi.org/10.1038/s41467-019-11837-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Sferra A, Nicita F, Bertini E (2020) Microtubule Dysfunction: A Common Feature of Neurodegenerative Diseases. Int J Mol Sci 21(19). https://doi.org/10.3390/ijms21197354

  80. Liu J et al (2022) Role of microtubule dynamics in Wallerian degeneration and nerve regeneration after peripheral nerve injury. Neural Regen Res 17(3):673–681. https://doi.org/10.4103/1673-5374.320997

    Article  CAS  PubMed  Google Scholar 

  81. Murillo B, Mendes Sousa M (2018) Neuronal Intrinsic Regenerative Capacity: The Impact of Microtubule Organization and Axonal Transport. Dev Neurobiol 78(10):952–959. https://doi.org/10.1002/dneu.22602

    Article  PubMed  Google Scholar 

  82. Capizzi M et al (2022) Developmental defects in Huntington’s disease show that axonal growth and microtubule reorganization require NUMA1. Neuron 110(1):36–50. https://doi.org/10.1016/j.neuron.2021.10.033

    Article  CAS  PubMed  Google Scholar 

  83. Brunello CA et al (2020) Mechanisms of secretion and spreading of pathological tau protein. Cell Mol Life Sci 77(9):1721–1744. https://doi.org/10.1007/s00018-019-03349-1

    Article  CAS  PubMed  Google Scholar 

  84. Jiménez JS (2022) Macromolecular Structures and Proteins Interacting with the Microtubule Associated Tau Protein. Neuroscience. https://doi.org/10.1016/j.neuroscience.2022.05.023

    Article  PubMed  Google Scholar 

  85. Largo-Barrientos P et al (2021) Lowering Synaptogyrin-3 expression rescues Tau-induced memory defects and synaptic loss in the presence of microglial activation. Neuron 109(5):767–777. https://doi.org/10.1016/j.neuron.2020.12.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Didonna A, Opal P (2019) The role of neurofilament aggregation in neurodegeneration: lessons from rare inherited neurological disorders. Mol Neurodegener 14(1):19. https://doi.org/10.1186/s13024-019-0318-4

    Article  PubMed  PubMed Central  Google Scholar 

  87. Breijyeh Z, Karaman R (2020) Comprehensive Review on Alzheimer’s Disease: Causes and Treatment. Molecules 25(24). https://doi.org/10.3390/molecules25245789

  88. Voronkov DN et al (2018) [Lewy bodies in Parkinson’s disease: histological, immunohistochemical, and interferometric examinations]. Arkh Patol 80(4):9–13. https://doi.org/10.17116/patol20188049

    Article  CAS  PubMed  Google Scholar 

  89. Falzone YM et al (2021) Current application of neurofilaments in amyotrophic lateral sclerosis and future perspectives. Neural Regen Res 16(10):1985–1991. https://doi.org/10.4103/1673-5374.308072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Delaby C et al (2020) Differential levels of Neurofilament Light protein in cerebrospinal fluid in patients with a wide range of neurodegenerative disorders. Sci Rep 10(1):9161. https://doi.org/10.1038/s41598-020-66090-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Gaetani L et al (2019) Neurofilament light chain as a biomarker in neurological disorders. J Neurol Neurosurg Psychiatry 90(8):870–881. https://doi.org/10.1136/jnnp-2018-320106

    Article  PubMed  Google Scholar 

  92. Caporizzo MA, Chen CY, Prosser BL (2019) Cardiac microtubules in health and heart disease. Exp Biol Med (Maywood) 244(15):1255–1272. https://doi.org/10.1177/1535370219868960

    Article  CAS  PubMed  Google Scholar 

  93. Ben-Shmuel A et al (2021) The Role of the Cytoskeleton in Regulating the Natural Killer Cell Immune Response in Health and Disease: From Signaling Dynamics to Function. Front Cell Dev Biol 9:609532. https://doi.org/10.3389/fcell.2021.609532

    Article  PubMed  PubMed Central  Google Scholar 

  94. Sever S (2021) Role of actin cytoskeleton in podocytes. Pediatr Nephrol 36(9):2607–2614. https://doi.org/10.1007/s00467-020-04812-z

    Article  PubMed  Google Scholar 

  95. Schreurs O et al (2020) Expression of keratins 8, 18, and 19 in epithelia of atrophic oral lichen planus Eur J Oral Sci, 128(1): p. 7–17.https://doi.org/10.1111/eos.12666

  96. Garlick E, Thomas SG, Owen DM (2021) Super-Resolution Imaging Approaches for Quantifying F-Actin in Immune Cells. Front Cell Dev Biol 9:676066. https://doi.org/10.3389/fcell.2021.676066

    Article  PubMed  PubMed Central  Google Scholar 

  97. Park JS et al (2020) Mechanical regulation of glycolysis via cytoskeleton architecture. Nature 578(7796):621–626. https://doi.org/10.1038/s41586-020-1998-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Miyamoto K, Harata M (2021) Nucleoskeleton proteins for nuclear dynamics. J Biochem 169(3):237–241. https://doi.org/10.1093/jb/mvab006

    Article  CAS  PubMed  Google Scholar 

  99. Ali R et al (2021) Jasplakinolide Attenuates Cell Migration by Impeding Alpha-1-syntrophin Protein Phosphorylation in Breast Cancer Cells. Protein J 40(2):234–244. https://doi.org/10.1007/s10930-021-09963-y

    Article  CAS  PubMed  Google Scholar 

  100. Hogrebe NJ et al (2020) Targeting the cytoskeleton to direct pancreatic differentiation of human pluripotent stem cells. Nat Biotechnol 38(4):460–470. https://doi.org/10.1038/s41587-020-0430-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

Funding was provided by the National Natural Science Foundation of China (NSFC) (NO.82071108), the Project of Science and Technology Department of Sichuan Province (NO.2021YJ0228), Research and Develop Program, West China Hospital of Stomatology Sichuan University (NO.LCYJ2020-YJ-3), and the science and technology application demonstration projects in Chengdu (NO.2021-YF09-00078-SN).

Author information

Authors and Affiliations

Authors

Contributions

J.Y, M.X.L and L.P designed and developed the original idea in detail, reviewed the literature, and wrote the manuscript. J.Y provided valuable feedback and helped revise the draft. Z.M.W, L.J.L, M.J.C, J.Y.C, and F.Z.W helped to perform the conception of the study with constructive discussions, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript before submission and publication.

Corresponding author

Correspondence to Jing Yang.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Peng, L., Wang, Z. et al. Roles of the cytoskeleton in human diseases. Mol Biol Rep 50, 2847–2856 (2023). https://doi.org/10.1007/s11033-022-08025-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-08025-5

Keywords

Navigation