Skip to main content

Cytoskeleton Dynamics in Health and Disease: Role of Molecular Switches and Rheostats

  • Chapter
The Cytoskeleton in Health and Disease

Abstract

Cytoskeleton dynamics provides the platform for most cellular functions and thus underlies a variety of human diseases. While the cytoskeleton cannot be targeted therapeutically, context-specific regulators of its dynamics can provide selective targets. IQGAP1 couples cell growth and division by which it regulates cell homeostasis, dysregulation of which underlies the etiology of many complex human diseases. Fundamental to this role is its regulation of cytoskeleton dynamics and organization of distinct modules that control a plethora of cytoskeleton-anchored cellular functions such as protein traffic and mechanical sensing. The tenet of this chapter is that IQGAP1 serves as a universal molecular rheostat that cells employ, as a sensitive devise, to regulate distinct functions in a precise manner. Selective rewiring of IQGAP1’s subcellular modules has potential for precision medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ramaekers FCS, Bosman FT (2004) The cytoskeleton and disease. J Pathol 204:351–354

    CAS  PubMed  Google Scholar 

  2. McMurray CT (2000) Neurodegeneration: diseases of the cytoskeleton? Cell Death Diff 7:861–865

    CAS  Google Scholar 

  3. Cortelazzo A, De Felice C, Pecorelli A, Belmonte G, Signorini C, Leoncini S, Zollo G, Capone A, Giovampaola CD, Sticozzi C, Valacchi G, Ciccoli L, Guerranti R, Hayek J (2014) Beta-actin deficiency with oxidative posttranslational modifications in Rett syndrome erythrocytes: insights into an altered cytoskeletal organization. PLoS One 9(3):e93181. doi:10.1371/journal.pone.0093181

    PubMed Central  PubMed  Google Scholar 

  4. Dominguez R, Holmes KC (2011) Actin structure and function. Annu Rev Biophys 40:169–186

    PubMed Central  CAS  PubMed  Google Scholar 

  5. Herman IM (1993) Actin isoforms. Curr Opin Cell Biol 5:48–55

    CAS  PubMed  Google Scholar 

  6. Osman MA, Cerione RA (2006) Actin doesn’t do the locomotion: secretion drives cell polarization. In: Segev N (ed) Protein trafficking: mechanisms and regulation. Landes Bioscience, Georgetown, TX

    Google Scholar 

  7. Pollard TD, Cooper JA (2009) Actin, a central player in cell shape and movement. Science 326(5957):1208–1212

    PubMed Central  CAS  PubMed  Google Scholar 

  8. Pollard TD, Blanchoin L, Mullins RD (2000) Molecular mechanisms controlling actin filament dynamics in nonmuscle cells. Annu Rev Biophys Biomol Struct 29:545–576

    CAS  PubMed  Google Scholar 

  9. Pruyne D, Evangelista M, Yang C, Bi E, Zigmond S, Bretscher A, Boone C (2002) Role of formins in actin assembly: nucleation and barbed-end association. Science 297(5581):612–615

    CAS  PubMed  Google Scholar 

  10. Kim K, Yamashita A, Wear MA, Maeda Y, Cooper JA (2004) Capping protein binding to actin in yeast: biochemical mechanism and physiological relevance. J Cell Biol 164:567–580

    PubMed Central  CAS  PubMed  Google Scholar 

  11. Machesky LM, Atkinson SJ, Ampe C, Vandekerckhove J, Pollard TD (1994) Purification of a cortical complex containing two unconventional actins from Acanthamoeba by affinity chromatography on profilin-agarose. J Cell Biol 127:107–115

    CAS  PubMed  Google Scholar 

  12. Pollard TD, Borisy GG (2003) Cellular motility driven by assembly and disassembly of actin filaments. Cell 112:453–465

    CAS  PubMed  Google Scholar 

  13. Eden S, Rohatgi R, Podtelejnikov AV, Mann M, Kirschner MW (2002) Mechanism of regulation of WAVE1-induced actin nucleation by Rac1 and Nck. Nature 418:790–793

    CAS  PubMed  Google Scholar 

  14. Miki H, Sasaki T, Takai Y, Takenawa T (1998) Induction of filopodium formation by a WASP-related actin-depolymerizing protein N-WASP. Nature 391:93–96

    CAS  PubMed  Google Scholar 

  15. Ismail AM, Padrick SB, Chen B, Umetani J, Rosen MK (2009) The WAVE regulatory complex is inhibited. Nat Struct Mol Biol 16(5):561–563

    PubMed Central  CAS  PubMed  Google Scholar 

  16. Rohatgi R, Ma L, Miki H, Lopez M, Kirchhausen T, Takenawa T, Kirschner MW (1999) The Interaction between N-WASP and the Arp2/3 complex links Cdc42-dependent signals to actin assembly. Cell 97:221–231

    CAS  PubMed  Google Scholar 

  17. Rohatgi R, Ho HY, Kirschner MW (2000) Mechanism of N-WASP activation by CDC42 and phosphatidylinositol 4, 5-bisphosphate. J Cell Biol 150:1299–1310

    PubMed Central  CAS  PubMed  Google Scholar 

  18. Egile C, Loisel TP, Laurent V, Li R, Pantaloni D, Sansonetti PJ, Carlier MF (1999) Activation of the Cdc42 effector N-Wasp by the Shigella flexneri Icsa protein promotes actin nucleation by Arp2/3 complex and bacterial actin-based motility. J Cell Biol 146:1319–1332

    PubMed Central  CAS  PubMed  Google Scholar 

  19. Miki H, Miura K, Takenawa T (1996) N-WASP, a novel actin-depolymerizing protein, regulates the cortical cytoskeletal rearrangement in a PIP2-dependent manner downstream of tyrosine kinases. EMBO J 15:5326–5335

    PubMed Central  PubMed  Google Scholar 

  20. Pertz O (2010) Spatio-temporal Rho GTPase signaling: where are we now? J Cell Sci 123:1841–1850

    CAS  PubMed  Google Scholar 

  21. Ridley AJ (2006) Rho GTPases and actin dynamics in membrane protrusions and vesicle trafficking. Trends Cell Biol 16:522–529

    CAS  PubMed  Google Scholar 

  22. Etienne-Manneville S, Hall A (2002) Rho GTPases in cell biology. Nature 420:629–635

    CAS  PubMed  Google Scholar 

  23. Osman MA (2010) An emerging role for IQGAP1 in regulating protein traffic. Sci World J 10:944–953

    CAS  Google Scholar 

  24. Bartolini F, Gundersen GG (2010) Formins and microtubules. Biochim Biophys Acta 1803:164–173

    PubMed Central  CAS  PubMed  Google Scholar 

  25. Palazzo AF, Cook TA, Alberts AS, Gundersen GG (2001) mDia mediates Rho-regulated formation and orientation of stable microtubules. Nat Cell Biol 3:723–729

    CAS  PubMed  Google Scholar 

  26. Vetter IR, Wittinghofer A (2001) The guanine nucleotide-binding switch in three dimensions. Science 294:1299–1304

    CAS  PubMed  Google Scholar 

  27. Cherfils J, Zeghouf M (2013) Regulation of small GTPases by GEFs, GAPs, and GDIs. Physiol Rev 93(1):269–309

    CAS  PubMed  Google Scholar 

  28. Hancock JF, Paterson H, Marshall CJ (1990) A polybasic domain or palmitoylation is required in addition to the CAAX motif to localize p21ras to the plasma membrane. Cell 63:133–139

    CAS  PubMed  Google Scholar 

  29. Adamson P, Marshall CJ, Hall A, Tilbrook PA (1992) Post-translational modifications of p21rho proteins. J Biol Chem 267:20033–20038

    CAS  PubMed  Google Scholar 

  30. Casey PJ, Seabra MC (1996) Protein prenyltransferases. J Biol Chem 271:5289–5292

    CAS  PubMed  Google Scholar 

  31. Leonard D, Hart MJ, Platko JV, Eva A, Henzel W, Evans T, Cerione RA (1992) The identification and characterization of a GDP-dissociation inhibitor (GDI) for the CDC42Hs protein. J Biol Chem 267:22860–22868

    CAS  PubMed  Google Scholar 

  32. Michaelson D, Silletti J, Murphy G, D'Eustachio P, Rush M, Philips MR (2001) Differential localization of Rho GTPases in live cells regulation by hypervariable regions and RhoGDI binding. J Cell Biol 152:111–126

    PubMed Central  CAS  PubMed  Google Scholar 

  33. Johnson JL, Erickson JW, Cerione RA (2009) New insights into how the Rho guanine nucleotide dissociation inhibitor regulates the interaction of Cdc42 with membranes. J Biol Chem 284:23860–23871

    PubMed Central  CAS  PubMed  Google Scholar 

  34. Kozma R, Ahmed S, Best A, Lim L (1995) The Ras-related protein Cdc42Hs and bradykinin promote formation of peripheral actin microspikes and filopodia in Swiss 3T3 fibroblasts. Mol Cell Biol 15:1942–1952

    PubMed Central  CAS  PubMed  Google Scholar 

  35. Nobes CD, Hall A (1995) Rho, Rac, and Cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 81:53–62

    CAS  PubMed  Google Scholar 

  36. Ridley AJ, Paterson HF, Johnston CL, Diekmann D, Hall A (1992) The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell 70:401–410

    CAS  PubMed  Google Scholar 

  37. Ridley AJ, Hall A (1992) The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell 70:389–399

    CAS  PubMed  Google Scholar 

  38. Burridge K, Wennerberg K (2004) Rho and Rac take center stage. Cell 116:167–179

    CAS  PubMed  Google Scholar 

  39. Olson MF, Ashworth A, Hall A (1995) An essential role for Rho, Rac, and Cdc42 GTPases in cell cycle progression through G1. Science 269:1270–1272

    CAS  PubMed  Google Scholar 

  40. Minden A, Lin A, Claret F-X, Abo A, Karin M (1995) Selective activation of the JNK signaling cascade and c-Jun transcriptional activity by the small GTPases Rac and Cdc42Hs. Cell 81:1147–1157

    CAS  PubMed  Google Scholar 

  41. Coso OA, Chiariello M, Yu J-C, Teramoto H, Crespo P, Xu N, Miki T, Gutkind JS (1995) The small GTP-binding proteins Rac1 and Cdc42 regulate the activity of the JNK/SAPK signaling pathway. Cell 81:1137–1146

    CAS  PubMed  Google Scholar 

  42. Lamaze C, Chuang T, Terlecky LJ, Bokoch GM, Schmid SL (1996) Regulation of receptor-mediated endocytosis by Rho and Rac. Nature 382:177–179

    CAS  PubMed  Google Scholar 

  43. Osman MA, Sarkar FH, Rodriguez-Boulan E (2013) A molecular rheostat on the interface of cancer and diabetes. Biochim Biophys Acta 1836:166–176

    PubMed Central  CAS  PubMed  Google Scholar 

  44. Diebold BA, Fowler B, Lu J, Dinauer MC, Bokoch GM (2004) Antagonistic crosstalk between Rac and Cdc42 GTPases regulates generation of reactive oxygen species. J Biol Chem 279:28136–28142

    CAS  PubMed  Google Scholar 

  45. Machacek M, Hodgson L, Welch C, Elliott H, Nalbant P, Pertz O, Abell A, Johnson GL, Hahn KM, Danuser G (2009) Coordination of Rho GTPase activities during cell protrusion. Nature 461:99–103

    PubMed Central  CAS  PubMed  Google Scholar 

  46. Gasman S, Chasserot-Golaz S, Popoff MR, Aunis D, Bader MF (1999) Involvement of Rho GTPases in calcium-regulated exocytosis from adrenal chromaffin cells. J Cell Sci 112:4763–4771

    CAS  PubMed  Google Scholar 

  47. Ory S, Gasman S (2011) Rho GTPases and exocytosis: what are the molecular links? Semin Cell Dev Biol 22(1):27–32. doi:10.1016/j.semcdb.2010.12.002

    CAS  PubMed  Google Scholar 

  48. Fukumoto Y, Kaibuchi K, Hori Y, Fujioka H, Araki S, Ueda T, Kikuchi A, Takai Y (1990) Molecular cloning and characterization of a novel type of regulatory protein (GDI) for the rho proteins, Ras p21-like small GTP-binding proteins. Oncogene 5:1321–1328

    CAS  PubMed  Google Scholar 

  49. Ueda T, Kikuchi A, Ohga N, Yamamoto J, Takai Y (1990) Purification and characterization from bovine brain cytosol of a novel regulatory protein inhibiting the dissociation of GDP from and the subsequent binding of GTP to rhoB p20, a ras p21-like GTP-binding protein. J Biol Chem 265:9373–9380

    CAS  PubMed  Google Scholar 

  50. Rossman KL, Der CJ, Sondek J (2005) GEF means go: turning on RHO GTPases with guanine nucleotide-exchange factors. Nat Rev Mol Cell Biol 6:167–180

    CAS  PubMed  Google Scholar 

  51. Cote JF, Vuori K (2007) GEF what? Dock180 and related proteins help Rac to polarize cells in new ways. Trends Cell Biol 17:383–393

    PubMed Central  CAS  PubMed  Google Scholar 

  52. Tcherkezian J, Lamarche-Vane N (2007) Current knowledge of the large RhoGAP family of proteins. Biol Cell 99:67–86

    CAS  PubMed  Google Scholar 

  53. Hao Y, Wong R, Feig LA (2008) RalGDS couples growth factor signaling to Akt activation. Mol Cell Biol 28:2851–2859

    PubMed Central  CAS  PubMed  Google Scholar 

  54. Zheng Y, Bagrodia S, Cerione RA (1994) Activation of phosphoinositide 3-kinase activity by Cdc42Hs binding to p85. J Biol Chem 269:18727–18730

    CAS  PubMed  Google Scholar 

  55. Kozma R, Ahmed S, Best A, Lim L (1996) The GTPase-activating protein n-chimaerin cooperates with Rac1 and Cdc42Hs to induce the formation of lamellipodia and filopodia. Mol Cell Biol 16:5069–5080

    PubMed Central  CAS  PubMed  Google Scholar 

  56. Marshal CJ (1996) Ras effectors. Curr Opin Cell Biol 8:197–204

    Google Scholar 

  57. Ma L, Rohatgi R, Kirschner MW (1998) The Arp2/3 complex mediates actin polymerization induced by the small GTP-binding protein Cdc42. Proc Natl Acad Sci U S A 95:15362–15367

    PubMed Central  CAS  PubMed  Google Scholar 

  58. Wallrabe H, Cai Y, Sun Y, Periasamy A, Luzes R, Fang X, Kan HM, Cameron LC, Schafer DA, Bloom GS (2013) IQGAP1 interactome analysis by in vitro reconstitution and live cell 3-color FRET microscopy. Cytoskeleton 70(12):819–836

    PubMed Central  CAS  PubMed  Google Scholar 

  59. Burack WR, Shaw AS (2000) Signal transduction: hanging on a scaffold. Curr Opin Cell Biol 12:211–216

    CAS  PubMed  Google Scholar 

  60. Ferrell JE Jr (2000) What do scaffold proteins really do? Science’s STKE 2000(52):pe1

    Google Scholar 

  61. Osman MA, Bloom GS, Tagoe EA (2013) Helicobacter pylori-induced alteration of epithelial cell signaling and polarity: a possible mechanism of gastric carcinoma etiology and disparity. Cytoskeleton 70:349–359

    CAS  PubMed  Google Scholar 

  62. Hart MJ, Callow MG, Souza B, Polakis P (1996) QGAP1, a calmodulin-binding protein with a rasGAP-related domain, is a potential effector for cdc42Hs. EMBO J 15:2997–3005

    PubMed Central  CAS  PubMed  Google Scholar 

  63. Bashour A-M, Fullerton AT, Hart MJ, Bloom GS (1997) IQGAP1, a Rac- and Cdc42-binding protein, directly binds and cross-inks microfilaments. J Cell Biol 137:1555–1566

    PubMed Central  CAS  PubMed  Google Scholar 

  64. Fukata M, Kuroda S, Fujii K, Nakamura T, Shoji I, Matsuura Y, Okawa K, Iwamatsu A, Kikuchi A, Kaibuchi K (1997) Regulation of cross-linking activity of actin filament by IQGAP1, a target for Cdc42. J Biol Chem 272:29579–29583

    CAS  PubMed  Google Scholar 

  65. Brandt DT, Grosse R (2007) Get to grips: steering local actin dynamics with IQGAPs. EMBO Rep 8:1019–1023

    PubMed Central  CAS  PubMed  Google Scholar 

  66. Briggs MW, Sacks DB (2003) IQGAP proteins are integral components of cytoskeletal regulation. EMBO Rep 4:571–574

    PubMed Central  CAS  PubMed  Google Scholar 

  67. Mateer SC, Wang N, Bloom GS (2003) IQGAPS: integrators of the cytoskeleton, cell adhesion machinery and signaling networks. Cell Motil Cytoskeleton 55(3):147–155

    CAS  PubMed  Google Scholar 

  68. Logue JS, Whiting JL, Tunquist B, Sacks DB, Langeberg LK, Wordeman L, Scott JD (2011) AKAP220 protein organizes signaling elements that impact cell migration. J Biol Chem 286:39269–39281

    PubMed Central  CAS  PubMed  Google Scholar 

  69. Nauert JB, Rigas JD, Lester LB (2003) Identification of an IQGAP1/AKAP79 complex in beta-cells. J Cell Biochem 90:97–108

    CAS  PubMed  Google Scholar 

  70. Tekletsadik YK, Sonn R, Osman MA (2012) A conserved role for IQGAP1 in regulating TOR complex 1. J Cell Sci 125:2041–2052

    PubMed Central  CAS  PubMed  Google Scholar 

  71. Rittmeyer EN, Daniel S, Hsu SC, Osman MA (2008) A dual role for IQGAP1 in regulating exocytosis. J Cell Sci 121:391–408

    CAS  PubMed  Google Scholar 

  72. Wang JB, Sonn R, Tekletsadik YK, Samorodnitsky D, Osman MA (2009) IQGAP1 regulates cell proliferation through a novel CDC42-mTOR pathway. J Cell Sci 122:2024–2033

    PubMed Central  CAS  PubMed  Google Scholar 

  73. Roy M, Li Z, Sacks DB (2004) IQGAP1 binds ERK2 and modulates its activity. J Biol Chem 279:17329–17337

    CAS  PubMed  Google Scholar 

  74. White CD, Brown MD, Sacks DB (2009) IQGAPs in cancer: a family of scaffold proteins underlying tumorigenesis. FEBS Lett 583:1817–1824

    PubMed Central  CAS  PubMed  Google Scholar 

  75. McCallum SJ, Wu WJ, Cerione RA (1996) Identification of a putative effector of Cdc42Hs with high sequence similarity to the RasGAP-related protein IQGAP1 and a Cdc42Hs binding partner with similarity to IQGAP2. J Biol Chem 271:21732–21737

    CAS  PubMed  Google Scholar 

  76. Joyal JL, Annan RS, Ho Y-D, Huddleston ME, Carr SA, Hart MJ, Sacks DB (1997) Calmodulin modulates the interaction between IQGAP1 and Cdc42. J Biol Chem 272:15419–15425

    CAS  PubMed  Google Scholar 

  77. Kuroda S, Fukata M, Kobayashi K, Nakafuku M, Nomura N, Iwamatsu A, Kaibuchi K (1996) Identification of IQGAP as a putative target for the small GTPases, Cdc42 and Rac1. J Biol Chem 271:23363–23367

    CAS  PubMed  Google Scholar 

  78. Kuroda S, Fukata M, Nakagawa M, Fujii K, Nakamura T, Ookubo T, Izawa I, Nagase T, Nomura N, Tani H, Shoji I, Matsuura Y, Yonehara S, Kaibuchi K (1998) Role of IQGAP1, a target of the small GTPases Cdc42 and Rac1, in regulation of E-cadherin-mediated cell-cell adhesion. Science 281:832–835

    CAS  PubMed  Google Scholar 

  79. Weissbach L, Settleman J, Kalady MF, Snijders AJ, Murthy AE, Yan Y-X, Bernards A (1994) Identification of a human rasGAP-related protein containing calmodulin-binding domains. J Biol Chem 269:20517–20521

    CAS  PubMed  Google Scholar 

  80. Kurella VB, Richard JM, Parke CL, Lecour LF Jr, Bellamy HD, Worthylake DK (2009) Crystal structure of the GAP-related domain from IQGAP1. J Biol Chem 284:14857–14865

    PubMed Central  CAS  PubMed  Google Scholar 

  81. Grohmanova K, Schlaepfer D, Hess D, Gutierrez P, Beck M, Kroschewski R (2004) Phosphorylation of IQGAP1 modulates its binding to Cdc42, revealing a new type of rho-GTPase regulator. J Biol Chem 279:48495–48504

    CAS  PubMed  Google Scholar 

  82. Brandt DT, Marion S, Griffiths G, Watanabe T, Kaibuchi K, Grosse R (2007) Dia1 and IQGAP1 interact in cell migration and phagocytic cup formation. J Cell Biol 178:193–200

    PubMed Central  CAS  PubMed  Google Scholar 

  83. Benseñor LB, Kan HM, Wang N, Wallrabe H, Davidson LA, Cai Y, Schafer DA, Bloom GS (2007) IQGAP1 regulates cell motility by linking growth factor signaling to actin assembly. J Cell Sci 120:658–669

    PubMed  Google Scholar 

  84. Le Clainche C, Schlaepfer D, Ferrari A, Klingauf M, Grohmanova K, Veligodskiy A, Didry D, Le D, Egile C, Carlier MF, Kroschewski R (2007) IQGAP1 stimulates actin assembly through the N-WASP-Arp2/3 pathway. J Biol Chem 282:426–435

    PubMed  Google Scholar 

  85. Pelikan-Conchaudron A, Le Clainche C, Didry D, Carlier MF (2011) The IQGAP1 protein is a calmodulin-regulated barbed end capper of actin filaments: possible implications in its function in cell migration. J Biol Chem 286:35119–35128

    PubMed Central  CAS  PubMed  Google Scholar 

  86. Fukata M, Watanabe T, Noritake J, Nakagawa M, Yamaga M, Kuroda S, Matsuura Y, Iwamatsu A, Perez F, Kaibuchi K (2002) Rac1 and Cdc42 capture microtubules through IQGAP1 and CLIP-170. Cell 109:873–885

    CAS  PubMed  Google Scholar 

  87. Watanabe T, Wang S, Noritake J, Sato K, Fukata M, Takefuji M, Nakagawa M, Izumi N, Akiyama T, Kaibuchi K (2004) Interaction with IQGAP1 links APC to Rac1, Cdc42, and actin filaments during cell polarization and migration. Dev Cell 7:871–883

    CAS  PubMed  Google Scholar 

  88. Watanabe T, Noritake J, Kakeno M, Matsui T, Harada T, Wang S, Itoh N, Sato K, Matsuzawa K, Iwamatsu A et al (2009) Phosphorylation of CLASP2 by GSK-3beta regulates its interaction with IQGAP1, EB1 and microtubules. J Cell Sci 122:2969–2979

    CAS  PubMed  Google Scholar 

  89. Johnson M, Sharma M, Brocardo MG, Henderson BR (2011) IQGAP1 translocates to the nucleus in early S-phase and contributes to cell cycle progression after DNA replication arrest. Int J Biochem Cell Biol 43:65–73

    CAS  PubMed  Google Scholar 

  90. Dixon MJ, Gray A, Schenning M, Agacan M, Tempel W, Tong Y, Nedyalkova L, Park H-W, Leslie NR, van Aalten DMF, Downes CP, Batty IH (2012) IQGAP proteins reveal an atypical phosphoinositide (aPI) binding domain with a pseudo C2 domain fold. J Biol Chem 287:22483–22496

    PubMed Central  CAS  PubMed  Google Scholar 

  91. Wang DS, Shaw R, Winkelmann JC, Shaw G (1994) Binding of PH domains of β-adrenergic-receptor kinase and β-spectrin to WD40/β-transducin repeat containing regions of the β-subunit of trimeric G-proteins. Biochem Biophys Res Commun 203:29–35

    CAS  PubMed  Google Scholar 

  92. Yao L, Kawakami Y, Kawakami T (1994) The pleckstrin homology domain of Bruton tyrosine kinase interacts with protein kinase C. Proc Natl Acad Sci 91:9175

    PubMed Central  CAS  PubMed  Google Scholar 

  93. Erickson JW, Cerione RA, Hart MJ (1997) Identification of an actin cytoskeletal complex that includes IQGAP and the Cdc42 GTPase. J Biol Chem 272:24443–24447

    CAS  PubMed  Google Scholar 

  94. Osman MA, Cerione RA (1998) Iqg1p, a yeast homologue of the mammalian IQGAPs, mediates cdc42p effects on the actin cytoskeleton. J Cell Biol 142:443–455

    PubMed Central  CAS  PubMed  Google Scholar 

  95. Epp AJ, Chant J (1997) An IQGAP-related protein controls actin-ring formation and cytokinesis in yeast. Curr Biol 7:921–929

    CAS  PubMed  Google Scholar 

  96. Osman MA, Konopka JB, Cerione RA (2002) Iqg1p links spatial and secretion landmarks to polarity and cytokinesis. J Cell Biol 159:601–611

    PubMed Central  CAS  PubMed  Google Scholar 

  97. Mateer SC, McDaniel AE, Nicolas V, Habermacher GM, Lin M-JS, Cromer DA, King ME, Bloom GS (2002) The mechanism for regulation of the F-actin binding activity of IQGAP1 by calcium/calmodulin. J Biol Chem 277:12324–12333

    CAS  PubMed  Google Scholar 

  98. Mateer ST, Morris LE, Cromer DA, Benseñor LB, Bloom GS (2004) Actin filament binding by a monomeric IQGAP1 fragment with a single calponin homology domain. Cell Motil Cytoskeleton 58:231–241

    CAS  PubMed  Google Scholar 

  99. Li R, Debreceni B, Jia B, Gao Y, Tigyi G, Zheng Y (1999) Localization of the PAK1-, WASP-, and IQGAP1-specifying regions of Cdc42. J Biol Chem 274:29648–29654

    CAS  PubMed  Google Scholar 

  100. Breitsprecher D, Goode BL (2013) Formins at a glance. J Cell Sci 126:1–7

    PubMed Central  CAS  PubMed  Google Scholar 

  101. Baarlink C, Wang H, Grosse R (2013) Nuclear actin network assembly by formins regulates the SRF coactivator MAL. Science 340:864–867

    CAS  PubMed  Google Scholar 

  102. Johnson MA, Sharma M, Mok MT, Henderson BR (2013) Stimulation of in vivo nuclear transport dynamics of actin and its co-factors IQGAP1 and Rac1 in response to DNA replication stress. Biochim Biophys Acta 1833:2334–2347

    CAS  PubMed  Google Scholar 

  103. Daou P, Hasan S, Breitsprecher D, Baudelet E, Camoin L, Audebert S, Goode BL, Badache A (2014) Essential and non-redundant roles for Diaphanous formins in cortical microtubule capture and directed cell migration. Mol Biol Cell 25(5):658–668

    PubMed Central  PubMed  Google Scholar 

  104. Noritake J, Fukata M, Sato K, Nakagawa M, Watanabe T, Izumi N, Wang S, Fukata Y, Kaibuchi K (2004) Positive role of IQGAP1, an effector of Rac1, in actin-meshwork formation at sites of cell-cell contact. Mol Biol Cell 15:1065–1076

    PubMed Central  CAS  PubMed  Google Scholar 

  105. Arnal I, Heichette C, Diamantopoulos GS, Chrétien D (2004) CLIP-170/tubulin-curved oligomers coassemble at microtubule ends and promote rescues. Curr Biol 14:2086–2095

    CAS  PubMed  Google Scholar 

  106. Mimori-Kiyosue Y, Grigoriev I, Lansbergen G, Sasaki H, Matsui C, Severin F, Galjart N, Grosveld F, Vorobjev I, Tsukita S et al (2005) CLASP1 and CLASP2 bind to EB1 and regulate microtubule plus-end dynamics at the cell cortex. J Cell Biol 168:141–153

    PubMed Central  CAS  PubMed  Google Scholar 

  107. Choi JH, Bertram PG, Drenan R, Carvalho J, Zhou HH, Zheng XFS (2002) The FKBP12-rapamycin-associated protein (FRAP) is a CLIP-170 kinase. EMBO Rep 3:988–994

    PubMed Central  CAS  PubMed  Google Scholar 

  108. Bañón-Rodríguez I, Gálvez-Santisteban M, Vergarajauregui S, Bosch M, Borreguero-Pascual A, Martín-Belmonte F (2014) EGFR controls IQGAP basolateral membrane localization and mitotic spindle orientation during epithelial morphogenesis. EMBO J 33:129–145

    PubMed Central  PubMed  Google Scholar 

  109. Gervais L, Casanova J (2010) In vivo coupling of cell elongation and lumen formation in a single cell. Curr Biol 20:359–366

    CAS  PubMed  Google Scholar 

  110. Saotome I, Curto M, McClatchey AI (2004) Ezrin is essential for epithelial organization and villus morphogenesis in the developing intestine. Dev Cell 6:855–864

    CAS  PubMed  Google Scholar 

  111. Jayanandanan N, Mathew R, Leptin M (2014) Guidance of subcellular tubulogenesis by actin under the control of a synaptotagmin-like protein and Moesin. Nat Commun 5:3036. doi:10.1038/ncomms4036

    PubMed Central  CAS  PubMed  Google Scholar 

  112. Gauthier BR, Wollheim CB (2008) Synaptotagmins bind calcium to release insulin. Am J Physiol Endocrinol Metab 295:E1279–E1286

    CAS  PubMed  Google Scholar 

  113. Liu J, Guidry JJ, Worthylake DK (2013) Conserved sequence repeats of IQGAP1 mediate binding to Ezrin. J Proteome Res. doi:10.1021/pr400787p

    Google Scholar 

  114. Kanwar N, Wilkins JA (2011) IQGAP1 involvement in MTOC and granule polarization in NK cell cytotoxicity. Eur J Immunol 41:2763–2773

    CAS  PubMed  Google Scholar 

  115. McNulty DE, Li Z, White CD, Sacks DB, Annan RS (2011) MAPK Scaffold IQGAP1 binds the EGF receptor and modulates its activation. J Biol Chem 286:15010–15021

    PubMed Central  CAS  PubMed  Google Scholar 

  116. Cotton CU, Hobert ME, Ryan S, Carlin CR (2013) Basolateral EGF receptor sorting regulated by functionally distinct mechanisms in renal epithelial cells. Traffic 14:337–354

    PubMed Central  CAS  PubMed  Google Scholar 

  117. Sun QY, Schatten H (2006) Role of NuMA in vertebrate cells: review of an intriguing multifunctional protein. Front Biosci 11:1137–1146

    CAS  PubMed  Google Scholar 

  118. Arakawa Y, Cordeiro JV, Way M (2007) The release of vaccinia virus from infected cells requires RhoA-mDia modulation of cortical actin. Cell Host Microbe 1:227–240

    CAS  PubMed  Google Scholar 

  119. Stinchcombe JC, Majorovits E, Bossi G, Fuller S, Griffiths GM (2006) Centrosome polarization delivers secretory granules to the immunological synapse. Nature 443:462–465

    CAS  PubMed  Google Scholar 

  120. Gorman JA, Babich A, Dick CJ, Schoon RA, Koenig A, Gomez TS, Burkhardt JK, Billadeau DD (2012) The cytoskeletal adaptor protein IQGAP1 regulates TCR-mediated signaling and filamentous actin dynamics. J Immunol 188:6135–6144

    PubMed Central  CAS  PubMed  Google Scholar 

  121. Barral Y (2010) Cell biology. Septins at the nexus. Science 329:1289–1290

    CAS  PubMed  Google Scholar 

  122. Saarikangas J, Barral Y (2011) The emerging functions of septins in metazoans. EMBO Rep 12:1118–1126

    PubMed Central  CAS  PubMed  Google Scholar 

  123. Spiliotis ET, Gladfelter AS (2012) Spatial guidance of cell asymmetry: septin GTPases show the way. Traffic 13:195–203

    PubMed Central  CAS  PubMed  Google Scholar 

  124. Founounou N, Loyer N, Le Borgne R (2013) Septins regulate the contractility of the actomyosin ring to enable adherens junction remodelling during cytokinesis of epithelial cells. Dev Cell 24:242–255

    CAS  PubMed  Google Scholar 

  125. Mostowy S, Janel S, Forestier C, Roduit C, Kasas S, Pizarro-Cerdá J, Cossart P, Lafont F (2011) A role for septins in the interaction between the Listeria monocytogenes INVASION PROTEIN InlB and the Met receptor. Biophys J 100:1949–1959

    PubMed Central  CAS  PubMed  Google Scholar 

  126. Gilden JK, Peck S, Chen YC, Krummel MF (2012) The septin cytoskeleton facilitates membrane retraction during motility and blebbing. J Cell Biol 196:103–114

    PubMed Central  CAS  PubMed  Google Scholar 

  127. Baumann S, König J, Koepke J, Feldbrügge M (2014) Endosomal transport of septin mRNA and protein indicates local translation on endosomes and is required for correct septin filamentation. EMBO Rep 15:94–102

    PubMed Central  CAS  PubMed  Google Scholar 

  128. Morita E, Sandrin V, Chung HY, Morham SG, Gygi SP, Rodesch CK, Sundquist WI (2007) Human ESCRT and ALIX proteins interact with proteins of the midbody and function in cytokinesis. EMBO J 26:4215–4227

    PubMed Central  CAS  PubMed  Google Scholar 

  129. Kinoshita M, Field CM, Coughlin ML, Straight AF, Mitchison TJ (2002) Self- and actin-templated assembly of mammalian septins. Dev Cell 3:791–802

    CAS  PubMed  Google Scholar 

  130. Mavrakis M, Azou-Gros Y, Tsai FC, Alvarado J, Bertin A, Iv F, Kress A, Brasselet S, Koenderink GH, Lecuit T (2014) Septins promote F-actin ring formation by crosslinking actin filaments into curved bundles. Nat Cell Biol 16:322–334

    CAS  PubMed  Google Scholar 

  131. Tsubota A, Matsumoto K, Mogushi K, Nariai K, Namiki Y, Hoshina S, Hano H, Tanaka H, Saito H, Tada N (2010) IQGAP1 and vimentin are key regulator genes in naturally occurring hepatotumorigenesis induced by oxidative stress. Carcinogenesis 31:504–511

    CAS  PubMed  Google Scholar 

  132. Thiery JP (2002) Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer 2:442–454

    CAS  PubMed  Google Scholar 

  133. Huber MA, Kraut N, Beug H (2005) Molecular requirements for epithelial-mesenchymal transition during tumor progression. Curr Opin Cell Biol 17:548–558

    CAS  PubMed  Google Scholar 

  134. Satelli A, Li S (2011) Vimentin in cancer and its potential as a molecular target for cancer therapy. Cell Mol Life Sci 68:3033–3046

    PubMed Central  CAS  PubMed  Google Scholar 

  135. Govaere O, Komuta M, Berkers J, Spee B, Janssen C, de Luca F, Katoonizadeh A, Wouters J, van Kempen LC, Durnez A, Verslype C, De Kock J, Rogiers V, van Grunsven LA, Topal B, Pirenne J, Vankelecom H, Nevens F, van den Oord J, Pinzani M, Roskams T (2014) Keratin 19: a key role player in the invasion of human hepatocellular carcinomas. Gut 63:674–685

    PubMed Central  CAS  PubMed  Google Scholar 

  136. Pufall MA, Graves BJ (2002) Autoinhibitory domains: modular effectors of cellular regulation. Annu Rev Cell Dev Biol 18:421–462

    CAS  PubMed  Google Scholar 

  137. Hall BE, Yang SS, Bar-Sagi D (2002) Autoinhibition of Sos by intramolecular interactions. Front Biosci 7:d288–d294

    CAS  PubMed  Google Scholar 

  138. Freedman TS, Sondermann H, Friedland GD, Kortemme T, Bar-Sagi D, Marqusee S, Kuriyan J (2006) A Ras-induced conformational switch in the Ras activator Son of sevenless. Proc Natl Acad Sci U S A 103:16692–16697

    PubMed Central  CAS  PubMed  Google Scholar 

  139. Aghazadeh B, Lowry WE, Huang XY, Rosen MK (2000) Structural basis for relief of autoinhibition of the Dbl homology domain of proto-oncogene Vav by tyrosine phosphorylation. Cell 102:625–633

    CAS  PubMed  Google Scholar 

  140. Lorenz M, Yamaguchi H, Wang Y, Singer RH, Condeelis J (2004) Imaging Sites of N-WASP Activity in Lamellipodia and Invadopodia of Carcinoma Cells. Curr Biol 14:697–703

    CAS  PubMed  Google Scholar 

  141. Kim AS, Kakalis LT, Abdul-Manan N, Liu GA, Rosen MK (2000) Autoinhibition and activation mechanisms of the Wiskott–Aldrich syndrome protein. Nature 404:151–158

    CAS  PubMed  Google Scholar 

  142. Li F, Higgs HN (2003) The mouse formin mDia1 is a potent actin nucleation factor regulated by autoinhibition. Curr Biol 13(15):1335–1340

    CAS  PubMed  Google Scholar 

  143. Hagan GN, Lin Y, Magnuson MA, Avruch J, Czech MP (2008) A Rictor-Myo1c complex participates in dynamic cortical actin events in 3T3-1 adipocytes. Mol Cell Biol 28:4215–4226

    PubMed Central  CAS  PubMed  Google Scholar 

  144. Laplante M, Sabatini DN (2009) mTOR signaling at a glance. J Cell Sci 122:3589–3594

    PubMed Central  CAS  PubMed  Google Scholar 

  145. Sarbassov DD, Guertin DA, Ali SM, Sabatini DM (2005) Phosphorylation and regulation of Akt/PKB by the rictor–mTOR complex. Science 307:1098–1101

    CAS  PubMed  Google Scholar 

  146. Hemmings BA, Restuccia DF (2012) PI3K-PKB/Akt Pathway. Cold Spring Harb Perspect Biol 4:a011189

    PubMed Central  PubMed  Google Scholar 

  147. Dibble CC, Asara JM, Manning BD (2009) Manning, characterization of rictor phosphorylation sites reveals direct regulation of mTOR complex 2 by S6K1. Mol Cell Biol 29:5657–5670

    PubMed Central  CAS  PubMed  Google Scholar 

  148. Boulbes D, Chen CH, Shaikenov T, Agarwal NK, Peterson TR, Addona TA, Keshishian H, Carr SA, Magnuson MA, Sabatini DM, Sarbassov DD (2010) Rictor phosphorylation on the Thr-1135 site does not require mammalian target of rapamycin complex 2. Mol Cancer Res 8:896–906

    PubMed Central  CAS  PubMed  Google Scholar 

  149. Treins C, Warne PH, Magnuson MA, Pende M, Downward J (2010) Rictor is a novel target of p70 S6 kinase-1. Oncogene 29:1003–1016

    CAS  PubMed  Google Scholar 

  150. Julien LA, Carriere A, Moreau J, Roux PP (2010) mTORC1-activated S6K1 phosphorylates Rictor on threonine 1135 and regulates mTORC2 signaling. Mol Cell Biol 30:908–921

    PubMed Central  CAS  PubMed  Google Scholar 

  151. Fruman DA, Rommel C (2014) PI3K and cancer: lessons, challenges and opportunities. Nat Rev Drug Discov 13:140–156

    PubMed Central  CAS  PubMed  Google Scholar 

  152. Mendoza MC, Er EE, Blenis J (2011) The Ras-ERK and PI3K-mTOR pathways: crosstalk and compensation. Trends Biochem Sci 36:320–328

    PubMed Central  CAS  PubMed  Google Scholar 

  153. Sbroggiò M, Carnevaleb D, Berteroa A, Cifelli G, Blasioa ED, Mascio G, Hirsch E, Bahou WF, Turco E, Silengo L, Brancaccio M, Lembo G, Tarone G (2011) IQGAP1 regulates ERK1/2 and AKT signaling in the heart and sustains functional remodeling upon pressure overload. Cardiovasc Res 91:456–464

    PubMed Central  PubMed  Google Scholar 

  154. Brown MD, Sacks DB (2009) Protein scaffolds in MAP kinase signaling. Cell Signal 21:462–469

    PubMed Central  CAS  PubMed  Google Scholar 

  155. Mendoza MC, Er EE, Zhang W, Ballif BA, Elliott HL, Danuser G, Blenis J (2011) ERK-MAPK drives lamellipodia protrusion by activating the WAVE2 regulatory complex. Mol Cell 41:661–671

    PubMed Central  CAS  PubMed  Google Scholar 

  156. Chen B, Brinkmann K, Chen Z, Pak CW, Liao Y, Shi S, Henry L, Grishin NV, Bogdan S, Rosen MK (2014) The WAVE regulatory complex links diverse receptors to the actin cytoskeleton. Cell 156:195–207

    PubMed Central  CAS  PubMed  Google Scholar 

  157. Li W, Fan J, Woodley DT (2001) Nck/Dock: an adapter between cell surface receptors and the actin cytoskeleton. Oncogene 20:6403–6417

    CAS  PubMed  Google Scholar 

  158. Needham SR, Hirsch M, Rolfe DJ, Clarke DT, Zanetti-Domingues LC, Wareham R, Martin-Fernandez ML (2013) Measuring EGFR separations on cells with approximately 10 nm resolution via fluorophore localization imaging with photobleaching. PLoS One 8:e62331

    PubMed Central  CAS  PubMed  Google Scholar 

  159. Blagoev B, Ong SE, Kratchmarova I, Mann M (2004) Temporal analysis of phosphotyrosine-dependent signaling networks by quantitative proteomics. Nat Biotechnol 22:1139–1145

    CAS  PubMed  Google Scholar 

  160. Kratchmarova I, Blagoev B, Haack-Sorensen M, Kassem M, Mann M (2005) Mechanism of divergent growth factor effects in mesenchymal stem cell differentiation. Science 308:1472–1477

    CAS  PubMed  Google Scholar 

  161. Yamaoka-Tojo M, Ushio-Fukai M, Hilenski L, Dikalov SI, Chen YE, Tojo T, Fukai T, Fujimoto M, Patrushev NA, Wang N et al (2004) IQGAP1, a novel VEGF receptor binding protein involved in reactive oxygen species-dependent endothelial migration and proliferation. Circ Res 95:276–283

    CAS  PubMed  Google Scholar 

  162. Yamaoka-Tojo M, Tojo T, Kim HW, Hilenski L, Patrushev NA, Zhang L, Fukai T, Ushio-Fukai M (2006) IQGAP1 mediates VE-cadherin-based cell-cell contacts and VEGF signaling at adherence junctions linked to angiogenesis. Arterioscler Thromb Vasc Biol 26:1991–1997

    CAS  PubMed  Google Scholar 

  163. Meyer RD, Sacks DB, Rahimi N (2008) IQGAP1-dependent signaling pathway regulates endothelial cell proliferation and angiogenesis. PLoS One 3(12):e3848. doi:10.1371/journal.pone.0003848

    PubMed Central  PubMed  Google Scholar 

  164. Kohno T, Urao N, Ashino T, Sudhahar V, Inomata H, Yamaoka-Tojo M, McKinney RD, Fukai T, Ushio-Fukai M (2013) IQGAP1 links PDGF receptor-{beta} signal to focal adhesions involved in vascular smooth muscle cell migration: role in neointimal formation after vascular injury. Am J Physiol Cell Physiol 305:C591–C600

    PubMed Central  CAS  PubMed  Google Scholar 

  165. Valcarcel-Ares MN, Gautam T, Warrington JP, Bailey-Downs L, Sosnowska D, de Cabo R, Losonczy G, Sonntag WE, Ungvari Z, Csiszar A (2012) Disruption of Nrf2 signaling impairs angiogenic capacity of endothelial cells: implications for microvascular aging. J Gerontol A Biol Sci Med Sci 67:821–829

    PubMed Central  PubMed  Google Scholar 

  166. Cheung KL, Lee JH, Shu L, Kim L-H, Sacks DB, Kong A-NT (2013) The Ras GTPase-activating-like protein IQGAP1 mediates Nrf2 protein activation via the mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK) Kinase (MEK)-ERK pathway. J Biol Chem 288:22378–22386

    PubMed Central  CAS  PubMed  Google Scholar 

  167. Lemmon MA, Schlessinger J (2010) Cell signaling by receptor tyrosine kinases. Cell 141:117–1134

    Google Scholar 

  168. Erdemir HH, Li Z, Sacks DB (2014) IQGAP1 binds to estrogen receptor-α and modulates its function. J Biol Chem 289(13):9100–9112

    PubMed Central  CAS  PubMed  Google Scholar 

  169. Bourguignon LWY, Gilad E, Rothman K, Peyrollier K (2005) Hyaluronan-CD44 interaction with IQGAP1 promotes Cdc42 and ERK signaling, leading to actin binding, Elk-1/estrogen receptor transcriptional activation, and ovarian cancer progression. J Biol Chem 280:11961–11972

    CAS  PubMed  Google Scholar 

  170. Mbele GO, Deloulme JC, Gentil BJ, Delphin C, Ferro M, Garin J, Takahashi M, Baudier J (2002) The zinc- and calcium-binding S100B interacts and co-localizes with IQGAP1 during dynamic rearrangement of cell membranes. J Biol Chem 277:49998–50007

    CAS  PubMed  Google Scholar 

  171. Heil A, Nazmi AR, Koltzscher M, Poeter M, Austermann J, Assard N, Baudier J, Kaibuchi K, Gerke V (2011) S100P is a novel interaction partner and regulator of IQGAP1. J Biol Chem 286:7227–7238

    PubMed Central  CAS  PubMed  Google Scholar 

  172. Liu C, Billadeau DD, Abdelhakim H, Leof E, Kaibuchi K, Bernabeu C, Bloom GS, Yang L, Boardman L, Shah VH, Kang N (2013) IQGAP1 suppresses TβRII-mediated myofibroblastic activation and metastatic growth in liver. J Clin Invest 123(3):1138–1156

    PubMed Central  CAS  PubMed  Google Scholar 

  173. Lu J, Qu Y, Liu Y, Jambusaria R, Han Z, Ruthel G, Freedman BD, Harty RN (2013) Host IQGAP1 and Ebola virus VP40 interactions facilitate virus-like particle egress. J Virol 87:7777–7780

    PubMed Central  CAS  PubMed  Google Scholar 

  174. Oldhami WM, Hamm HE (2008) Heterotrimeric G protein activation by G-protein-coupled receptors. Nat Rev Mol Cell Biol 9:60–71

    Google Scholar 

  175. Katritch V, Cherezov V, Stevens RC (2013) Structure-function of the G protein–coupled receptor superfamily. Annu Rev Pharmacol Toxicol 53:531–556

    PubMed Central  CAS  PubMed  Google Scholar 

  176. Ritter SL, Hall RA (2008) Fine-tuning of GPCR activity by receptor-interacting proteins. Nat Rev Mol Cell Biol 10:819–830

    Google Scholar 

  177. Malin C, Schi HB (2008) Structural diversity of G protein-coupled receptors and significance for drug discovery. Nat Rev Drug Discov 7:339–357

    Google Scholar 

  178. Witze ES, Connacher MK, Houel S, Schwartz MP, Morphew MK, Reid L, Sacks DB, Anseth KS, Ahn NG (2013) Wnt5a directs polarized calcium gradients by recruiting cortical endoplasmic reticulum to the cell trailing edge. Dev Cell 26:645–657

    CAS  PubMed  Google Scholar 

  179. Nuriya M, Oh S, Huganir RL (2005) Phosphorylation-dependent interactions of alpha-Actinin-1/IQGAP1 with the AMPA receptor subunit GluR4. J Neurochem 95:544–552

    CAS  PubMed  Google Scholar 

  180. Gao C, Frausto SF, Guedea AL, Tronson NC, Jovasevic V, Leaderbrand K, Corcoran KA, Guzmán YF, Swanson GT, Radulovic J (2011) IQGAP1 regulates NR2A signaling, spine density, and cognitive processes. J Neurosci 31:8533–8542

    PubMed Central  CAS  PubMed  Google Scholar 

  181. Li Z, McNulty DE, Marler KJ, Lim L, Hall C, Annan RS, Sacks DB (2005) IQGAP1 promotes neurite outgrowth in a phosphorylation-dependent manner. J Biol Chem 280:13871–13878

    CAS  PubMed  Google Scholar 

  182. Neel NF, Sai J, Ham A-JL, Sobolik-Delmaire T, Mernaugh RL, Richmond A (2011) IQGAP1 is a novel CXCR2-interacting protein and essential component of the “Chemosynapse”. PLoS One 6(8):e23813. doi:10.1371/journal.pone.0023813

    PubMed Central  CAS  PubMed  Google Scholar 

  183. Cvetkovic D, Dragan M, Leith SJ, Mir ZM, Leong HS, Pampillo M, Lewis JD, Babwah AV, Bhattacharya M (2013) KISS1R induces invasiveness of estrogen receptor-negative human mammary epithelial and breast cancer cells. Endocrinology 154:1999–2014

    CAS  PubMed  Google Scholar 

  184. Buday L, Wunderlich L, Tamás P (2002) The Nck family of adapter proteins: regulators of actin cytoskeleton. Cell Signal 14:723–731

    CAS  PubMed  Google Scholar 

  185. Smith MJ, Hardy WR, Li GY, Goudreault M, Hersch S, Metalnikov P, Starostine A, Pawson T, Ikura M (2010) The PTB domain of ShcA couples receptor activation to the cytoskeletal regulator IQGAP1. EMBO J 29(5):884–896. doi:10.1038/emboj.2009.399, Epub 2010 Jan 14

    PubMed Central  CAS  PubMed  Google Scholar 

  186. Humphries AC, Donnelly SK, Way M (2014) Cdc42 and the RhoGEF intersectin-1 collaborate with Nck to promote N-WASP-dependent actin polymerisation. J Cell Sci 127:673–685

    CAS  PubMed  Google Scholar 

  187. Ridley AJ (2011) Life at the leading edge. Cell 145:1012–1022

    CAS  PubMed  Google Scholar 

  188. Miki H, Takenawa T (2003) Regulation of actin dynamics by WASP family proteins. J Biochem 134:309–313

    CAS  PubMed  Google Scholar 

  189. Benesch S, Polo S, Lai FP, Anderson KI, Stradal TE, Wehland J, Rottner K (2005) N-WASP deficiency impairs EGF internalization and actin assembly at clathrin-coated pits. J Cell Sci 118:3103–3115

    CAS  PubMed  Google Scholar 

  190. Suetsugu S, Yamazaki D, Kurisu S, Takenawa T (2003) Differential roles of WAVE1 and WAVE2 in dorsal and peripheral ruffle formation for fibroblast cell migration. Dev Cell 5:595–609

    CAS  PubMed  Google Scholar 

  191. Yamazaki D, Suetsugu S, Miki H, Kataoka Y, Nishikawa S, Fujiwara T, Yoshida N, Takenawa T (2003) WAVE2 is required for directed cell migration and cardiovascular development. Nature 424:452–456

    CAS  PubMed  Google Scholar 

  192. Mataraza JM, Briggs MW, Li Z, Entwistle A, Ridley AJ, Sacks DB (2003) IQGAP1 promotes cell motility and invasion. J Biol Chem 278:41237–41245

    CAS  PubMed  Google Scholar 

  193. Dong PX, Jia N, Xu ZJ, Liu YT, Li DJ, Feng YJ (2008) Silencing of IQGAP1 by shRNA inhibits the invasion of ovarian carcinoma HO-8910PM cells in vitro. J Exp Clin Cancer Res 27:77

    PubMed Central  PubMed  Google Scholar 

  194. Tomasevic N, Jia Z, Russell A, Fujii T, Hartman JJ, Clancy S, Wang M, Beraud C, Wood KW, Sakowicz R (2007) Differential regulation of WASP and N-WASP by Cdc42, Rac1, Nck, and PI(4,5)P2. Biochemistry 46:3494–3502

    CAS  PubMed  Google Scholar 

  195. Choi S, Thapa N, Hedman AC, Li Z, Sacks DB, Anderson RA (2013) IQGAP1 is a novel phosphatidylinositol 4,5 bisphosphate effector in regulation of directional cell migration. EMBO J 32:2617–2630

    PubMed Central  CAS  PubMed  Google Scholar 

  196. Weijer CJ (2009) Collective cell migration in development. J Cell Sci 122:3215–3223

    CAS  PubMed  Google Scholar 

  197. Friedl P, Wolf K, Zegers MM (2014) Rho-directed forces in collective migration. Nat Cell Biol 16:208–210

    CAS  PubMed  Google Scholar 

  198. Reffay M, Parrini MC, Cochet-Escartin O, Ladoux B, Buguin A, Coscoy S, Amblard F, Camonis J, Silberzan P (2014) Interplay of RhoA and mechanical forces in collective cell migration driven by leader cells. Nat Cell Biol 16:217–223

    CAS  PubMed  Google Scholar 

  199. Tanos B, Rodriguez-Boulan E (2008) The epithelial polarity program: machineries involved and their hijacking by cancer. Oncogene 27:6939–6957

    CAS  PubMed  Google Scholar 

  200. Nelson JW (2009) Remodeling epithelial cell organization: transitions between front–rear and apical–basal polarity. Cold Spring Harb Perspect Biol 1(1):a000513. doi:10.1101/cshperspect.a000513

    PubMed Central  PubMed  Google Scholar 

  201. Roignot J, Peng X, Mostov K (2013) Polarity in mammalian epithelial morphogenesis. Cold Spring Harb Perspect Biol 5:a013789

    PubMed Central  PubMed  Google Scholar 

  202. Hartsock A, Nelson WJ (2008) Adherens and tight junctions: structure, function and connections to the actin cytoskeleton. Biochim Biophys Acta 1778:660–669

    PubMed Central  CAS  PubMed  Google Scholar 

  203. Ratheesh A, Yap AS (2012) A bigger picture: classical Cadherins and the dynamic actin cytoskeleton. Nat Rev Mol Cell Biol 13:673–679

    CAS  PubMed  Google Scholar 

  204. Niessen C, Leckband D, Yap AS (2011) Tissue organization by classical cadherin adhesion molecules: dynamic molecular and cellular mechanisms of morphogenetic regulation. Physiol Rev 91:691–731

    PubMed Central  CAS  PubMed  Google Scholar 

  205. Tanos BE, Perez Bay AE, Salvarezza S, Vivanco I, Mellinghoff I, Osman M, Sacks DB, Rodriguez-Boulan E (2015) J Cell Sci 128(5):853–862. doi:10.1242/jcs.118703

  206. Yamashiro S, Noguchi T, Mabuchi I (2003) Localization of two IQGAPs in cultured cells and early embryos of Xenopus laevis. Cell Motil Cytoskeleton 55:36–50

    CAS  PubMed  Google Scholar 

  207. Kuroda S, Fukata M, Nakagawa M, Kaibuchi K (1999) Cdc42, Rac1, and their effector IQGAP1 as molecular switches for cadherin-mediated cell-cell adhesion. Biochem Biophys Res Commun 262:1–6

    CAS  PubMed  Google Scholar 

  208. Yan J, Yang Y, Zhang H, King C, Kan HM, Cai Y, Yuan CX, Bloom GS, Hua X (2009) Menin interacts with IQGAP1 to enhance intercellular adhesion of beta-cells. Oncogene 28:973–982

    PubMed Central  CAS  PubMed  Google Scholar 

  209. Fukata M, Nakagawa M, Itoh N, Kawajiri A, Yamaga M, Kuroda S, Kaibuchi K (2001) Involvement of IQGAP1, an effector of Rac1 and Cdc42 GTPases, in cell-cell dissociation during cell scattering. Mol Cell Biol 21:2165–2183

    PubMed Central  CAS  PubMed  Google Scholar 

  210. Spiliotis ET, Nelson JW (2003) Spatial control of exocytosis. Curr Opin Cell Biol 15:430–437

    PubMed Central  CAS  PubMed  Google Scholar 

  211. Kreitzer G, Schmoranzer J, Low SH, Li X, Gan Y, Weimbs T, Simon SM, Rodriguez-Boulan E (2003) Three-dimensional analysis of post-Golgi carrier exocytosis in epithelial cells. Nat Cell Biol 5:126–136

    CAS  PubMed  Google Scholar 

  212. Nelson JW, Rodriguez-Boulan E (2004) Unravelling protein sorting. Nat Cell Biol 6:282–284

    PubMed Central  CAS  PubMed  Google Scholar 

  213. Schroeder HW III, Mitchell C, Shuman H, Holzbauer ELF, Goldman YE (2010) Motor number controls cargo switching at actin-microtubule intersections in vitro. Curr Biol 20:687–696

    CAS  PubMed  Google Scholar 

  214. Gerber SH, Südhof TC (2002) Molecular determinants of regulated exocytosis. Diabetes 51(Suppl 1):S3–S11

    Google Scholar 

  215. Shandala T, Kakavanos-Plew R, Ng YS, Bader C, Sorvina A, Parkinson-Lawrence EJ, Brooks RD, Borlace GN, Prodoehl MJ, Brooks DA (2012). Molecular machinery regulating exocytosis. In: Weigert R (ed) crosstalk and integration of membrane trafficking pathways. InTech, ISBN: 978-953-51-0515-2. doi:10.5772/39110. Available from: http://www.intechopen.com/books/crosstalk-and-integration-of-membrane-trafficking-pathways/molecular-machinery-regulating-exocytosis

  216. Burgoyne RD, Morgan A (2003) Secretory granule exocytosis. Physiol Rev 83:581–632

    CAS  PubMed  Google Scholar 

  217. Gutierrez LM (2012) New insights into the role of the cortical cytoskeleton in exocytosis from neuroendocrine cells. Int Rev Cell Mol Biol 295:109–137

    CAS  PubMed  Google Scholar 

  218. Nightingale TD, Cutler DF, Cramer LP (2012) Actin coats and rings promote regulated exocytosis. Trends Cell Biol 6:329–337

    Google Scholar 

  219. Porat-Shliom N, Milberg O, Masedunskas A, Weigert R (2012) Multiple roles for the actin cytoskeleton during regulated exocytosis. Cell Mol Life Sci. doi:10.1007/s00018-012-1156-5

    PubMed Central  PubMed  Google Scholar 

  220. Hou JC, Min L, Pessin JE (2009) Insulin granule biogenesis, trafficking and exocytosis. Vitam Horm 80:473–506

    PubMed Central  CAS  PubMed  Google Scholar 

  221. Wilson JR, Ludowyke RI, Biden TJ (2001) A redistribution of actin and myosin IIA accompanies Ca(2?)-dependent insulin secretion. FEBS Lett 492:101–106

    CAS  PubMed  Google Scholar 

  222. Wang JL, Easom RA, Hughes JH, McDaniel ML (1990) Evidence for a role of microfilaments in insulin release from purified beta-cells. Biochem Biophys Res Commun 171:424–430

    CAS  PubMed  Google Scholar 

  223. Swanston-Flatt SK, Carlsson L, Gylfe E (1980) Actin filament formation in pancreatic beta-cells during glucose stimulation of insulin secretion. FEBS Lett 117:299–302

    CAS  PubMed  Google Scholar 

  224. Howell SL, Tyhurst M (1980) Regulation of actin polymerization in rat islets of Langerhans. Biochem J 192:381–383

    PubMed Central  CAS  PubMed  Google Scholar 

  225. Hong-Geller E, Cerione RA (2000) Cdc42. Rac stimulate exocytosis of secretory granules by activating the IP(3)/calcium pathway in RBL-2H3 mast cells. J Cell Biol 148:481–494

    PubMed Central  CAS  PubMed  Google Scholar 

  226. Kowluru A, Li G, Rabaglia ME, Segu VB, Hofmann F, Aktories K, Metz SA (1997) Evidence for differential roles of the Rho subfamily of GTP-binding proteins in glucose- and calcium-induced insulin secretion from pancreatic beta cells. Biochem Pharmacol 54:1097–1108

    CAS  PubMed  Google Scholar 

  227. Kowluru A (2010) Small G proteins in islet beta-cell function. Endocr Rev 31:52–78

    PubMed Central  CAS  PubMed  Google Scholar 

  228. Daniel S, Noda M, Cerione RA, Sharp GW (2002) A link between Cdc42 and syntaxin is involved in mastoparan-stimulated insulin release. Biochemistry 41:9663–9671

    CAS  PubMed  Google Scholar 

  229. Amin RH, Chen HQ, Veluthakal R, Silver RB, Li J, Li G et al (2003) Mastoparan-induced insulin secretion from insulin-secreting betaTC3 and INS-1 cells: evidence for its regulation by Rho subfamily of G proteins. Endocrinology 144:4508–4518

    CAS  PubMed  Google Scholar 

  230. Hammar E, Tomas A, Bosco D, Halban PA (2009) Role of the Rho-ROCK (Rho associated kinase) signaling pathway in the regulation of pancreatic beta cell function. Endocrinology 150:2072–2079

    CAS  PubMed  Google Scholar 

  231. Jayaram B, Syed I, Kyathanahalli CN, Rhodes CJ, Kowluru A (2011) Arf nucleotide binding site opener [ARNO] promotes sequential activation of Arf6, Cdc42 and Rac1 and insulin secretion in INS 832/13 beta-cells and rat islets. Biochem Pharmacol 81:1016–1027

    PubMed Central  CAS  PubMed  Google Scholar 

  232. Asahara S, Shibutani Y, Teruyama K, Inoue HY, Kawada Y, Etoh H et al (2013) Ras-related C3 botulinum toxin substrate 1 (RAC1) regulates glucose stimulated insulin secretion via modulation of F-actin. Diabetologia 56:1088–1097

    PubMed Central  CAS  PubMed  Google Scholar 

  233. Kowluru A, Veluthakal R (2005) Rho guanosine diphosphate-dissociation inhibitor plays a negative modulatory role in glucose-stimulated insulin secretion. Diabetes 54:3523–3529

    CAS  PubMed  Google Scholar 

  234. Kowluru A, Veluthakal R, Rhodes CJ, Kamath V, Syed I, Koch BJ (2010) Protein farnesylation-dependent Raf/extracellular signal-related kinase signaling links to cytoskeletal remodeling to facilitate glucose induced insulin secretion in pancreatic beta-cells. Diabetes 59:967–977

    PubMed Central  CAS  PubMed  Google Scholar 

  235. Li J, Luo R, Kowluru A, Li G (2004) Novel regulation by Rac1 of glucose- and forskolin-induced insulin secretion in INS-1 beta-cells. Am J Physiol Endocrinol Metab 286:E818–E827

    CAS  PubMed  Google Scholar 

  236. Kowluru A (2011) Friendly, and not so friendly, roles of Rac1 in islet beta-cell function: lessons learnt from pharmacological and molecular biological approaches. Biochem Pharmacol 81:965–975

    PubMed Central  CAS  PubMed  Google Scholar 

  237. Ueda S, Kitazawa S, Ishida K, Nishikawa Y, Matsui M, Matsumuto H, Aoki T, Nozaki S, Takeda T, Tamori Y, Aiba A, Kahn CR, Kataoka T, Satoh T (2010) Crucial role of the small GTPase Rac1 in insulin-stimulated translocation of glucose transporter 4 to the mouse skeletal muscle sarcolemma. FASEB J 24:2254–2261

    PubMed Central  CAS  PubMed  Google Scholar 

  238. Chiu TT, Jensen TE, Sylow L, Richter EA, Klip A (2011) Rac1 signalling towards GLUT4/glucose uptake in skeletal muscle. Cell Signal 23:1546–1554

    CAS  PubMed  Google Scholar 

  239. Balamatsias D, Kong AM, Waters JE, Sriratana A, Gurung R, Bailey CG, Rasko JE, Tiganis T, Macaulay SL, Mitchell CA (2011) Identification of P-Rex1 as a novel Rac1-guanine nucleotide exchange factor (GEF) that promotes actin remodeling and GLUT4 protein trafficking in adipocytes. J Biol Chem 286:43229–43240

    PubMed Central  CAS  PubMed  Google Scholar 

  240. Noritake U, Watanabe T, Sato K, Wang S, Kaibuchi K (2005) IQGAP1: a key regulator of adhesion and migration. J Cell Sci 118:2085–2092

    CAS  PubMed  Google Scholar 

  241. Schmitz-Peiffer C, Laybutt DR, Burchfield JG, Gurisik E, Narasimhan S, Mitchell CJ, Pedersen DJ, Braun U, Cooney GJ, Leitges M, Biden TJ (2007) Inhibition of PKCε improves glucose-stimulated insulin secretion and reduces insulin clearance. Cell Metab 6:320–328

    CAS  PubMed  Google Scholar 

  242. He B, Xi F, Zhang X, Zhang J, Guo W (2007) Exo70 interacts with phospholipids and mediates the targeting of the exocyst to the plasma membrane. EMBO J 26:4053–4065

    PubMed Central  CAS  PubMed  Google Scholar 

  243. He B, Guo W (2009) The exocyst complex in polarized exocytosis. Curr Opin Cell Biol 21:537–542

    PubMed Central  CAS  PubMed  Google Scholar 

  244. Liu J, and Guo W. (2012). The exocyst complex in exocytosis and cell migration. Protoplasma#. 249(3):587–97. doi: 10.1007/s00709-011-0330-1. Epub 2011 Oct 14

  245. Morgera F, Sallah MR, Dubuke ML, Gandhi P, Brewer DN, Carr CM, Munson M (2012) Regulation of exocytosis by the exocyst subunit Sec6 and the SM protein Sec1. Mol Biol Cell 23:337–346, 1939–4586

    Google Scholar 

  246. Kimura T, Yamaoka M, Taniguchi S, Okamoto M, Takei M, Ando T, Iwamatsu A, Watanabe T, Kaibuchi K, Ishizaki T, Niki I (2013) Activated Cdc42-bound IQGAP1 determines the cellular endocytic site. Mol Cell Biol 33:4834–4843

    PubMed Central  CAS  PubMed  Google Scholar 

  247. Vo YP, Hutton JC, Angleson JK (2004) Recycling of the dense-core vesicle membrane protein phogrin in Min6 beta-cells. Biochem Biophys Res Commun 324:1004–1010

    CAS  PubMed  Google Scholar 

  248. Rosentreter A, Hofmann A, Xavier CP, Stumpf M, Noegel AA, Clemen CS (2007) Coronin 3 involvement in F-actin-dependent processes at the cell cortex. Exp Cell Res 313:878–895

    CAS  PubMed  Google Scholar 

  249. Doherty GJ, McMahon HT (2009) Mechanisms of endocytosis. Annu Rev Biochem 78:857–902

    CAS  PubMed  Google Scholar 

  250. Guo DC, Pannu H, Tran-Fadulu V, Papke CL, Yu RK, Avidan N, Bourgeois S, Estrera AL, Safi HJ, Sparks E, Amor D, Ades L, McConnell V, Willoughby CE, Abuelo D, Willing M, Lewis RA, Kim DH, Scherer S, Tung PP, Ahn C, Buja LM, Raman CS, Shete SS, Milewicz DM (2007) Mutations in smooth muscle alphaactin (ACTA2) lead to thoracic aortic aneurysms and dissections. Nat Genet 39:1488–1493

    CAS  PubMed  Google Scholar 

  251. Guo DC, Papke CL, Tran-Fadulu V, Regalado ES, Avidan N, Johnson RJ, Kim DH, Pannu H, Willing MC, Sparks E, Pyeritz RE, Singh MN, Dalman RL, Grotta JC, Marian AJ, Boerwinkle EA, Frazier LQ, LeMaire SA, Coselli JS, Estrera AL, Safi HJ, Veeraraghavan S, Muzny DM, Wheeler DA, Willerson JT, Yu RK, Shete SS, Scherer SE, Raman CS, Buja LM, Milewicz DM (2009) Mutations in smooth muscle alpha-actin (ACTA2) cause coronary artery disease, stroke, and Moyamoya disease, along with thoracic aortic disease. Am J Hum Genet 84:617–627

    PubMed Central  CAS  PubMed  Google Scholar 

  252. Morisaki H, Akutsu K, Ogino H, Kondo N, Yamanaka I, Tsutsumi Y, Yoshimuta T, Okajima T, Matsuda H, Minatoya K, Sasaki H, Tanaka H, Ishibashi-Ueda H, Morisaki T (2009) Mutation of ACTA2 gene as an important cause of familial and nonfamilial nonsyndromatic thoracic aortic aneurysm and/or dissection (TAAD). Hum Mutat 30:1406–1411

    CAS  PubMed  Google Scholar 

  253. Sparrow JC, Nowak KJ, Durling HJ, Beggs AH, Wallgren-Pettersson C, Romero N, Nonaka I, Laing NG (2003) Muscle disease caused by mutations in the skeletal muscle alpha-actin gene (ACTA1). Neuromuscul Disord 13:519–531

    PubMed  Google Scholar 

  254. Pearson GD, Devereux R, Loeys B, Maslen C, Milewicz D, Pyeritz R, Ramirez F, Rifkin D, Sakai L, Svensson L, Wessels A, Van Eyk J, Dietz HC (2008) Report of the National Heart, Lung, and Blood Institute and National Marfan Foundation Working Group on research in Marfan syndrome and related disorders. Circulation 118(7):785–791

    PubMed Central  PubMed  Google Scholar 

  255. Milewicz DM, Guo DC, Tran-Fadulu V, Lafont AL, Papke CL, Inamoto S, Kwartler CS, Pannu H (2008) Genetic basis of thoracic aortic aneurysms and dissections: focus on smooth muscle cell contractile dysfunction. Annu Rev Genomics Hum Genet 9:283–302

    CAS  PubMed  Google Scholar 

  256. Newey SE, Velamoor V, Govek EE, Van Aelst L (2005) Rho GTPases, dendritic structure, and mental retardation. J Neurobiol 64:58–74

    CAS  PubMed  Google Scholar 

  257. Loirand G, Pacaud P (2010) The role of Rho protein signaling in hypertension. Nat Rev Cardiol 7:637–647

    CAS  PubMed  Google Scholar 

  258. Aktories K (2011) Bacterial protein toxins that modify host regulatory GTPases. Nat Rev Microbiol 9:487–498

    CAS  PubMed  Google Scholar 

  259. Kanaan Z, Qadan M, Eichenberger MR, Galandiuk S (2010) The actin-cytoskeleton pathway and its potential role in inflammatory bowel disease-associated human colorectal cancer. Genet Test Mol Biomarkers 14:347–353

    PubMed Central  CAS  PubMed  Google Scholar 

  260. Vega FM, Ridley AJ (2008) Rho GTPases in cancer cell biology. FEBS Lett 582:2093–2101

    CAS  PubMed  Google Scholar 

  261. Weir GC, Marselli L, Marchetti P, Katsuta H, Jung MH, Bonner-Weir S (2009) Towards better understanding of the contributions of overwork and glucotoxicity to the β-cell inadequacy of type 2 diabetes. Diabetes Obes Metab 11(Suppl 4):82–90

    Google Scholar 

  262. Bonner-Weir S, Li L, O-Yahalom W-C, Guo L, Weir GC, Sharma A (2010) β-cell growth and regeneration: replication is only part of the story. Diabetes 59:2340–2348

    Google Scholar 

  263. Mathews AEW, Mathews CE (2012) Inherited b-cell dysfunction in lean individuals with type 2 diabetes. Diabetes 61:1659–1660

    PubMed Central  CAS  PubMed  Google Scholar 

  264. Bonnycastle LL, Chines PS, Hara T, Huyghe JR, Swift AJ, Heikinheimo P, Mahadevan J, Peltonen S, Huopio H, Nuutila P, Narisu N, Goldfeder RL, Stitze MLl LS, Boehnke M, Urano F, Collins FS, Laakso M (2013) Autosomal dominant diabetes arising from a wolfram syndrome 1 mutation. Diabetes 62:3943–3950

    PubMed Central  CAS  PubMed  Google Scholar 

  265. McCarthy MI, Zeggini E (2006) Genetics of type 2 diabetes. Curr Diab Rep 6:147–154

    CAS  PubMed  Google Scholar 

  266. Zeggini E, Scott L, Saxena R, Voight B (2008) Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes. Nat Genet 40:638–645

    PubMed Central  CAS  PubMed  Google Scholar 

  267. Morris A, Voight B, Teslovich T, Ferreira T, Segre A, Steinthorsdottir V et al (2012) Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes. Nat Genet 44:981–990

    PubMed Central  CAS  PubMed  Google Scholar 

  268. Sirovich L (2014) Genomic data and disease forecasting: application to type 2 diabetes (T2D). PLoS One 9(1):e85684. doi:10.1371/journal.pone.0085684

    PubMed Central  PubMed  Google Scholar 

  269. McCarthy MI, Hirschhorn JN (2008) Genome-wide association studies: potential next steps on a genetic journey. Hum Mol Genet 17(R2):R156–R165

    PubMed Central  CAS  PubMed  Google Scholar 

  270. Manolio T (2010) Genome-wide association studies and assessment of the risk of disease. N Engl J Med 363:166–176

    CAS  PubMed  Google Scholar 

  271. Fu M, Sabra MM, Damcott C, Pollin T, Ma L, Ott S et al (2007) Evidence that Rho guanine nucleotide exchange factor 11 (ARHGEF11) on 1q21 is a Type 2 diabetes susceptibility gene in the old order Amish. Diabetes 56:1363–1368

    Google Scholar 

  272. Mercader JM, Puiggros M, Segrè AV, Planet E, Sorianello E, Sebastian D et al (2012) Identification of novel type 2 diabetes candidate genes involved in the crosstalk between the mitochondrial and the insulin signaling systems. PLoS Genet 8(12):e1003046. doi:10.1371/journal.pgen.1003046

  273. Marselli L, Thorne J, Ahn YB, Omer A, Sgroi DC, Libermann TH, Out H, Sharma A, Bonner-Weir S, Weir GC (2008) Gene expression of purified beta-cell tissue obtained from human pancreas with laser capture microdissection. J Clin Endocrinol Metab 93:1046–1053

    PubMed Central  CAS  PubMed  Google Scholar 

  274. da Silva CV, Cruz L, Araújo Nda S, Angeloni MB, Fonseca BB, Gomes Ade O, Carvalho Fdos R, Gonçalves AL, Barbosa Bde F (2012) A glance at Listeria and Salmonella cell invasion: different strategies to promote host actin polymerization. Int J Med Microbiol 302:19–32

    PubMed  Google Scholar 

  275. Reed SC, Lamason RL, Risca VI, Abernathy E, Welch MD (2014) Rickettsia actin-based motility occurs in distinct phases mediated by different actin nucleators. Curr Biol 24:98–103

    PubMed Central  CAS  PubMed  Google Scholar 

  276. Welch MD, Way M (2013) Arp2/3-mediated actin-based motility: a tail of pathogen abuse. Cell Host Microbe 14:242–255

    PubMed Central  CAS  PubMed  Google Scholar 

  277. Ireton K (2013) Molecular mechanisms of cell-cell spread of intracellular bacterial pathogens. Open Biol 3(7):130079. doi:10.1098/rsob.130079

    PubMed Central  PubMed  Google Scholar 

  278. Dong N, Liu L, Shao F (2010) A bacterial effector targets host DH-PH domain RhoGEFs and antagonizes macrophage phagocytosis. EMBO J 29:1363–1376

    PubMed Central  CAS  PubMed  Google Scholar 

  279. Hayward RD, Koronakis V (2002) Direct modulation of the host cell cytoskeleton by Salmonella actin-binding proteins. Trends Cell Biol 12:15–20

    CAS  PubMed  Google Scholar 

  280. Mounier J, Laurent V, Hall A, Fort P, Carlier M-F, Sansonetti PJ, Egile C (1999) Rho family GTPases control entry of Shigella flexneri into epithelial cells but not intracellular motility. J Cell Sci 112:2069–2080

    CAS  PubMed  Google Scholar 

  281. Hardt WD, Chen LM, Schuebel KE, Bustelo XR, Galan JE (1998) S. typhimurium encodes an activator of Rho GTPases that induces membrane ruffling and nuclear responses in host cells. Cell 93:815–826

    CAS  PubMed  Google Scholar 

  282. Fu Y, Galan JE (1999) A Salmonella protein antagonizes Rac-1 and Cdc42 to mediate host-cell recovery after bacterial invasion. Nature 401:293–297

    CAS  PubMed  Google Scholar 

  283. Stebbins CE, Galan JE (2000) Modulation of host signaling by a bacterial mimic: structure of the Salmonella effector SptP bound to Rac1. Mol Cell 6:1449–1460

    CAS  PubMed  Google Scholar 

  284. Prehna G, Ivanov MI, Bliska JB, Stebbins CE (2006) Yersinia virulence depends on mimicry of host rho-family nucleotide dissociation inhibitors. Cell 126:869–880

    CAS  PubMed  Google Scholar 

  285. Alto NM, Shao F, Lazar CS, Brost RL, Chua G, Mattoo S, McMahon SA, Ghosh P, Hughes TR, Boone C, Dixon JE (2006) Identification of a bacterial type III effector family with G protein mimicry functions. Cell 124:133–145

    CAS  PubMed  Google Scholar 

  286. Klink BU, Barden S, Heidler TV, Borchers C, Ladwein M, Stradal TE, Rottner K, Heinz DW (2010) Structure of Shigella IpgB2 in complex with human RhoA: implications for the mechanism of bacterial guanine nucleotide exchange factor mimicry. J Biol Chem 285:17197–17208

    PubMed Central  CAS  PubMed  Google Scholar 

  287. Cossart P, Roy CR (2010) Manipulation of host membrane machinery by bacterial pathogens. Curr Opin Cell Biol 22:547–554

    PubMed Central  CAS  PubMed  Google Scholar 

  288. Cameron LA, Svitkina TM, Vignjevic D, Theriot JA, Borisy GG (2001) Dendritic organization of actin comet tails. Curr Biol 11:130–135

    CAS  PubMed  Google Scholar 

  289. Mueller J, Pfanzelter J, Winkler C, Narita A, Le Clainche C, Nemethova M, Carlier M-F, Maeda Y, Welch MD, Ohkawa T, Schmeiser C, Resch GP, Small JV (2014) Electron tomography and simulation of baculovirus actin comet tails support a tethered filament model of pathogen propulsion. PLoS Biol 12(1):e1001765. doi:10.1371/journal.pbio.1001765

    PubMed Central  PubMed  Google Scholar 

  290. Robinson R (2014) Actin comets: traversing the cellular universe. PLoS Biol 12(1):e1001766. doi:10.1371/journal.pbio.1001766

    PubMed Central  PubMed  Google Scholar 

  291. Kim H, White CD, Sacks DB (2011) IQGAP1 in microbial pathogenesis: targeting the actin cytoskeleton. FEBS Lett 585:723–729

    PubMed Central  CAS  PubMed  Google Scholar 

  292. Chertova E, Chertov O, Coren LV, Roser JD, Trubey CM, Bess JW Jr, Sowder RC II, Barsov E, Hood BL, Fisher RJ, Nagashima K, Conrads TP, Veenstra TD, Lifson JD, Ott DE (2006) Proteomic and biochemical analysis of purified human immunodeficiency virus type 1 produced from infected monocyte-derived macrophages. J Virol 80:9039–9052

    PubMed Central  CAS  PubMed  Google Scholar 

  293. Leung J, Yueh A, Appah FS Jr, Yuan B, de los Santos K, Goff SP (2006) Interaction of Moloney murine leukemia virus matrix protein with IQGAP. EMBO J 25:2155–2166

    Google Scholar 

  294. Gladue DP, Holinka LG, Fernandez-Sainz IJ, Prarat MV, O’Donnell V, Vepkhvadze NG, Lu Z, Risatti GR, Borca MV (2011) Interaction between core protein of classical swine fever virus with cellular IQGAP1 protein appears essential for virulence in swine. Virology 412:68–74

    CAS  PubMed  Google Scholar 

  295. Carlton JG, Martin-Serrano J (2007) Parallels between cytokinesis and retroviral budding: a role for the ESCRT machinery. Science 316:1908–1912

    CAS  PubMed  Google Scholar 

  296. Brown MD, Bry L, Li Z, Sacks DB (2008) Actin pedestal formation by enteropathogenic Escherichia coli is regulated by IQGAP1, calcium, and calmodulin. J Biol Chem 283:35212–35222

    PubMed Central  CAS  PubMed  Google Scholar 

  297. Buss C, Muller D, Ruter C, Heusipp G, Schmidt MA (2009) Identification and characterization of Ibe, a novel type III effector protein of A/E pathogens targeting human IQGAP1. Cell Microbiol 11:661–677

    CAS  PubMed  Google Scholar 

  298. McLaughlin LM, Govoni GR, Gerke C, Gopinath S, Peng K et al (2009) The Salmonella SPI2 effector SseI mediates long-term systemic infection by modulating host cell migration. PLoS Pathog 5(11):e1000671. doi:10.1371/journal.ppat.1000671

    PubMed Central  PubMed  Google Scholar 

  299. Karlsson T, Turkina MV, Yakymenko O, Magnusson K-E, Vikström E (2012) The Pseudomonas aeruginosa N-Acylhomoserine lactone quorum sensing molecules target IQGAP1 and modulate epithelial cell migration. PLoS Pathog 8(10):e1002953. doi:10.1371/journal.ppat.1002953

    PubMed Central  PubMed  Google Scholar 

  300. McGarvey JA, Wagner D, Bermudez LE (2004) Differential gene expression in mononuclear phagocytes infected with pathogenic and non-pathogenic mycobacteria. Clin Exp Immunol 136:490–500

    PubMed Central  CAS  PubMed  Google Scholar 

  301. Rogers JV, Choi YW, Giannunzio LF, Sabourin PJ, Bornman DM, Blosser EG, Sabourin CL (2007) Transcriptional responses in spleens from mice exposed to Yersinia pestis CO92. Microb Pathog 43:67–77

    CAS  PubMed  Google Scholar 

  302. Conlin VS, Curtis SB, Zhao Y, Moore EDW, Smith VC, Meloche RM, Finlay BB, Buchan AMJ (2004) Helicobacter pylori infection targets adherens junction regulatory proteins and results in increased rates of migration in human gastric epithelial cells. Infect Immun 72:5181–5192

    PubMed Central  CAS  PubMed  Google Scholar 

  303. Wu Y, Chen YC, Sang JR, Xu WR (2011) RhoC protein stimulates migration of gastric cancer cells through interaction with scaffold protein IQGAP1. Mol Med Rep 4:697–703

    CAS  PubMed  Google Scholar 

  304. Blaser MJ, Perez-Perez GI, Kleanthous H, Cover TL, Peek RM, Chyou PH, Stemmermann GN, Nomura A (1995) Infection with Helicobacter pylori strains possessing cagA is associated with an increased risk of developing adenocarcinoma of the stomach. Cancer Res 55:2111–2115

    CAS  PubMed  Google Scholar 

  305. Hatakeyama M, Higashi H (2005) Helicobacter pylori CagA: a new paradigm for bacterial carcinogenesis. Cancer Sci 96:835–843

    CAS  PubMed  Google Scholar 

  306. Mégraud F (2013) Current recommendations for Helicobacter pylori therapies in a world of evolving resistance. Gut Microbes 4(6):541–548

    PubMed Central  PubMed  Google Scholar 

  307. Fox GJ, Wang CT, Parsonnet J (2006) Helicobacter, chronic inflammation, and cancer. In: Hausen ZH (ed) Infections causing human cancer. Wiley-VCH, Germany, pp 386–467

    Google Scholar 

  308. Bauer B, Meyer TF (2011) The human gastric pathogen helicobacter pylori and its association with gastric cancer and ulcer disease. Ulcers:23. doi:10.1155/2011/340157. Article ID 340157

  309. Wessler S, Gimona M, Rieder G (2011) Regulation of the actin cytoskeleton in Helicobacter pylori-induced migration and invasive growth of gastric epithelial cells. Cell Commun Signal 9:27. http://www.biosignaling.com/content/9/1/27

  310. Bessède E, Staedel C, Acuña Amador LA, Nguyen PH, Chambonnier L, Hatakeyama M, Belleannée G, Mégraud F, Varon C (2013) Helicobacter pylori generates cells with cancer stem cell properties via epithelial-mesenchymal transition-like changes. Oncogene. doi:10.1038/onc.2013.380

    PubMed  Google Scholar 

  311. Tsutsumi R, Takahashi A, Azuma T, Higashi H, Hatakeyama M (2006) Focal adhesion kinase is a substrate and downstream effector of SHP-2 complexed with Helicobacter pylori CagA. Mol Cell Biol 26:1–276

    Google Scholar 

  312. Schneider S, Weydig C, Wessler S (2008) Targeting focal adhesions: Helicobacter pylori-host communication in cell migration. Cell Commun Signal 6:2. doi:10.1186/1478-811X-6-2. http://www.biosignaling.com/content/6/1/2

  313. Varon C, Dubus P, Mazurier F, Asencio C, Chambonnier L, Ferrand J, Giese A, Senant-Dugot N, Carlotti M, Mégraud F (2012) Helicobacter pylori infection recruits bone marrow-derived cells that participate in gastric preneoplasia in mice. Gastroenterology 142:281–291

    PubMed  Google Scholar 

  314. Sehring IM, Dong B, Denker E, Bhattachan P, Deng W, Mathiese BT, Jiang D (2014) An equatorial contractile mechanism drives cell elongation but not cell division. PLoS Biol 12(2):e1001781. doi:10.1371/journal.pbio.1001781

    PubMed Central  PubMed  Google Scholar 

  315. Greber UF, Way M (2006) A superhighway to virus infection. Cell 124:741–754

    CAS  PubMed  Google Scholar 

  316. Rodriguez OC, Schaefer AW, Mandato CA, Forscher P, William M, Bement WM, Waterman-Storer CM (2003) Conserved microtubule–actin interactions in cell movement and morphogenesis. Nat Cell Biol 5:599–609

    CAS  PubMed  Google Scholar 

  317. Ellenbroek SI, Collard JG (2007) Rho GTPases: functions and association with cancer. Clin Exp Metastasis 24:657–672

    CAS  PubMed  Google Scholar 

  318. Tang Y, Olufemi L, Wang MT, Nie D (2008) Role of Rho GTPases in breast cancer. Front Biosci 13:759–776

    CAS  PubMed  Google Scholar 

  319. Karlsson R, Pedersen ED, Wang Z, Brakebusch C (2009) Rho GTPase function in tumorigenesis. Biochim Biophys Acta 1796:91–98

    CAS  PubMed  Google Scholar 

  320. Parri M, Chiarugi P (2010) Rac and Rho GTPases in cancer cell motility control. Cell Commun Signal 8:23

    PubMed Central  PubMed  Google Scholar 

  321. Mulloy JC, Cancelas JA, Filippi MD, Kalfa TA, Guo F, Zheng Y (2010) Rho GTPases in hematopoiesis and hemopathies. Blood 115:936–947

    PubMed Central  CAS  PubMed  Google Scholar 

  322. Pai S, Kim C, Williams DA (2010) Rac GTPases in human diseases. Dis Markers 29:177–187

    PubMed Central  CAS  PubMed  Google Scholar 

  323. Mack NA, Whalley HJ, Castillo-Lluva S, Malliri A (2011) The diverse roles of Rac signaling in tumorigenesis. Cell Cycle 10:1571–1581

    PubMed Central  CAS  PubMed  Google Scholar 

  324. Lin R, Cerione RA, Manor D (1999) Specific contributions of the small GTPases Rho, Rac, and Cdc42 to Dbl transformation. J Biol Chem 274:23633–23641

    CAS  PubMed  Google Scholar 

  325. Schnelzer A, Prechtel D, Knaus U, Dehne K, Gerhard M, Graeff H, Harbeck N, Schmitt M, Lengyel E (2000) Rac1 in human breast cancer. Overexpression, mutation analysis, and characterization of a new isoform, Rac1b. Oncogene 19:3013–3020

    CAS  PubMed  Google Scholar 

  326. Vigil D, Cherfils J, Rossman KL, Der CJ (2010) Ras superfamily GEFs and GAPs: validated and tractable targets for cancer therapy? Nat Rev Cancer 10:842–857

    PubMed Central  CAS  PubMed  Google Scholar 

  327. Palmby TR, Abe K, Karnoub AE, Der CJ (2004) Vav transformation requires activation of multiple GTPases and regulation of gene expression. Mol Cancer Res 2:702–711

    CAS  PubMed  Google Scholar 

  328. Montalvo-Ortiz BL, Castillo-Pichardo L, Hernández E, Humphries-Bickley T, De la Mota-Peynado A, Cubano LA, Vlaar CP, Dharmawardhane S (2012) Characterization of EHop-016, novel small molecule inhibitor of Rac GTPase. J Biol Chem 287:13228–13238

    PubMed Central  CAS  PubMed  Google Scholar 

  329. Razidlo GL, Schroeder B, Chen J, Billadeau DD, Mark A, McNiven MA (2014) Vav1 as a central regulator of invadopodia assembly. Curr Biol 24:86–93

    PubMed Central  CAS  PubMed  Google Scholar 

  330. Coppolino MG, Krause M, Hagendorff P, Monner DA, Trimble W, Grinstein S, Wehland J, Sechi AS (2001) Evidence for a molecular complex consisting of Fyb/SLAP, SLP-76, Nck, VASP and WASP that links the actin cytoskeleton to Fcgamma receptor signalling during phagocytosis. J Cell Sci 114:4307–4318

    CAS  PubMed  Google Scholar 

  331. Narumiya S, Tanji M, Ishizaki T (2009) Rho signaling, ROCK and mDia1, in transformation, metastasis and invasion. Cancer Metastasis Rev 28:65–76

    CAS  PubMed  Google Scholar 

  332. Morris LE, Bloom GS, Frierson HF, Powell SM (2005) Nucleotide variants within the IQGAP1 gene in diffuse-type gastric cancers. Genes Chromosomes Cancer 42:280–286

    CAS  PubMed  Google Scholar 

  333. Elliott SF, Allen G, Timson DJ (2012) Biochemical analysis of the interactions of IQGAP1 C-terminal domain with CDC42. World J Biol Chem 3:53–60

    PubMed Central  PubMed  Google Scholar 

  334. Johnson M, Sharma M, Henderson BR (2009) IQGAP1 regulation and roles in cancer. Cell Signal 21:1471–1478

    CAS  PubMed  Google Scholar 

  335. Walch A, Seidl S, Hermannstädter C, Rauser S, Deplazes J, Langer R, von Weyhern CH, Sarbia M, Busch R, Feith M, Gillen S, Höfler H, Luber B (2008) Combined analysis of Rac1, IQGAP1, Tiam1 and E-cadherin expression in gastric cancer. Mod Pathol 21:544–552

    CAS  PubMed  Google Scholar 

  336. Sanchez-Laorden B, Viros A, Marais R (2013) Mind the IQGAP. Cancer Cell 23:715–717

    CAS  PubMed  Google Scholar 

  337. Jameson KL, Mazur PK, Zehnder AM, Zhang J, Zarnegar B, Sage J, Khavari PA (2013) IQGAP1 scaffold-kinase interaction blockade selectively targets RAS-MAP kinase–driven tumors. Nat Med 19:626–630

    PubMed Central  CAS  PubMed  Google Scholar 

  338. Suzuki K, Takahashi K (2006) Induction of E-cadherin endocytosis by loss of protein phosphatase 2A expression in human breast cancers. Biochem Biophys Res Commun 349:255–260

    CAS  PubMed  Google Scholar 

  339. Jacquemet G, Green DM, Bridgewater RE, von Kriegsheim A, Humphries MJ, Norman JC, Caswell PT (2013) RCP-driven α5β1 recycling suppresses Rac and promotes RhoA activity via the RacGAP1-IQGAP1 complex. J Cell Biol 202:917–935

    PubMed Central  CAS  PubMed  Google Scholar 

  340. Clark EA, Golub TR, Lander ES, Hynes RO (2000) Genomic analysis of metastasis reveals an essential role for RhoC. Nature 406:532–535

    CAS  PubMed  Google Scholar 

  341. Jadeski L, Mataraza JM, Jeong HW, Li Z, Sacks DB (2008) IQGAP1 stimulates proliferation and enhances tumorigenesis of human breast epithelial cells. J Biol Chem 283:1008–1017

    CAS  PubMed  Google Scholar 

  342. Sakurai-Yageta M, Recchi C, Le Dez G, Sibarita J-B, Daviet L, Camonis J, D’Souza-Schorey C, Chavrier P (2008) The interaction of IQGAP1 with the exocyst complex is required for tumor cell invasion downstream of Cdc42 and RhoA. J Cell Biol 181:985–998

    PubMed Central  CAS  PubMed  Google Scholar 

  343. Monteiro P, Rossé C, Castro-Castro A, Irondelle M, Lagoutte E, Paul-Gilloteaux P, Desnos C, Formstecher E, Darchen F, Perrais D, Gautreau A, Hertzog M, Chavrier P (2013) Endosomal WASH and exocyst complexes control exocytosis of MT1-MMP at invadopodia. J Cell Biol 203:1063–1079

    PubMed Central  CAS  PubMed  Google Scholar 

  344. Ma Y, Jin Z, Huang J, Zhou S, Ye H, Jiang S, Yu K (2014) Quercetin suppresses the proliferation of multiple myeloma cells by downregulating IQGAP1 expression and ERK activation. Leuk Lymphoma 55(11):2597–2604

    CAS  PubMed  Google Scholar 

  345. Matsunaga H, Kubota K, Inoue T, Isono F, Ando O (2014) IQGAP1 selectively interacts with K-Ras but not with H-Ras and modulates K-Ras function. Biochem Biophys Res Commun 44:360–364

    Google Scholar 

  346. Casteel DE, Turner S, Schwappacher R, Rangaswami H, Su-Yuo J, Zhuang S, Boss GR, Pilz RB (2012) Rho isoform-specific interaction with IQGAP1 promotes breast cancer cell proliferation and migration. J Biol Chem 287:38367–38378

    PubMed Central  CAS  PubMed  Google Scholar 

  347. Shumaker DK, Kuczmarski ER, Goldman RD (2003) The nucleoskeleton: lamins and actin are major players in essential nuclear functions. Curr Opin Cell Biol 2003(15):358–366

    Google Scholar 

  348. Andrin C, McDonald D, Attwood KM, Rodrigue A, Ghosh S, Mirzayans R, Masson JY, Dellaire G, Hendzel MJ (2012) A requirement for polymerized actin in DNA double-strand break repair. Nucleus 3:384–395

    PubMed  Google Scholar 

  349. Luby-Phelps K (2000) Cytoarchitecture and physical properties of cytoplasm: volume, viscosity, diffusion, intracellular surface area. Int Rev Cytol 192:189–221

    CAS  PubMed  Google Scholar 

  350. Karcher RL, Deacon SW, Gelfand VI (2002) Motor-cargo interactions: the key to transport specificity. Trends Cell Biol 12:21–27

    CAS  PubMed  Google Scholar 

  351. Hadziselimovic N, Vukojevic V, Peter F, Milnik A, Fastenrath M, Fenyves BG, Hieber P, Demougin P, Vogler C, Quervain DJ-F, Papassotiropoulos A, Stetak A (2014) Forgetting is regulated via musashi-mediated translational control of the Arp2/3 complex. Cell 156:1153–1166

    CAS  PubMed  Google Scholar 

  352. Engl W, Arasi B, Yap LL, Thiery JP, Viasnoff V (2014) Actin dynamics modulate mechanosensitive immobilization of E-cadherin at adheren junctions. Nat Cell Biol 16:587–594

    CAS  PubMed  Google Scholar 

  353. Stehbens SJ, Paszek M, Pemble H, Ettinger A, Gierke S, Wittmann T (2014) CLASPs link focal-adhesion-associated microtubule capture to localized exocytosis and adhesion site turnover. Nat Cell Biol 16:561–573

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

Work in the MO lab was supported by grants from the NIH-NCI (CA104285) and from ACS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahasin A. Osman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Osman, M.A. (2015). Cytoskeleton Dynamics in Health and Disease: Role of Molecular Switches and Rheostats. In: Schatten, H. (eds) The Cytoskeleton in Health and Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2904-7_2

Download citation

Publish with us

Policies and ethics