Skip to main content

Advertisement

Log in

Claudin-6 increases SNAI1, NANOG and SOX2 gene expression in human gastric adenocarcinoma AGS cells

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Gastric cancer is a heterogeneous disease associated to deregulated gastric epithelia tight junction barrier function and di novo expression of claudin-6; these changes are associated with epithelial-mesenchymal transition, enhanced invasiveness, metastatic progression, resistance to chemotherapy, and poor prognosis. Gastric cancer stem cells represent a rare population of cells within the tumor implicated in tumor growth and higher tumorigenic capacity. The possible relation between claudin-6 expression and the expression of some markers associated to epithelial mesenchymal transition and cancer stem cells in gastric cancer cells have never been explored.

Methods and results

CD44, CD24, Twist, Villin, DCLK1, claudin-6, NANOG, E-Cadherin, SOX2, and SNAI1 expression was evaluated by immunofluorescence and cytofluorometry in wild type and Claudin-6 transfected AGS cells. Cell migration assays were also performed. Differentially expressed genes and biological processes analysis was performed to determine gene preponderance. The results showed that claudin-6 overexpression enriched the CD44 + /CD24- subpopulation with an overall increase in the expression and the number of CD44 + cells. A significant increase in NANOG, SOX2 and SNAI1 expression and enhanced cell migration was observed in claudin-6 transfected cells. Transcriptome analysis revealed 271 genes involved in enhanced biological processes with only 31 with a significantly p value; thirteen of those genes are closely associated to epithelial mesenchymal transition processes and folding and unfolding processes of proteins in the endoplasmic reticulum.

Conclusions

The pro-tumorigenic effect of claudin-6 in gastric cancer could be associated to dedifferentiation of epithelial cells and an increase in di novo cancer stem cell genesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M et al (2015) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 136(5):E359–E386

    Article  CAS  PubMed  Google Scholar 

  2. Gao JP, Xu W, Liu WT, Yan M, Zhu ZG (2018) Tumor heterogeneity of gastric cancer: from the perspective of tumor-initiating cell. World J Gastroenterol 24(24):2567–2581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wang H, Yang X (2015) The expression patterns of tight junction protein claudin-1, -3, and -4 in human gastric neoplasms and adjacent non-neoplastic tissues. Int J Clin Exp Pathol 8(1):881–887

    PubMed  PubMed Central  Google Scholar 

  4. Suzuki H, Tani K, Tamura A, Tsukita S, Fujiyoshi Y (2015) Model for the architecture of claudin-based paracellular ion channels through tight junctions. J Mol Biol 427(2):291–297

    Article  CAS  PubMed  Google Scholar 

  5. Iravani O, Tay BW, Chua PJ, Yip GW, Bay BH (2013) Claudins and gastric carcinogenesis. Exp Biol Med (Maywood) 238(4):344–349

    Article  PubMed  Google Scholar 

  6. Corsini M, Ravaggi A, Odicino F, Santin AD, Ravelli C, Presta M et al (2018) Claudin3 is localized outside the tight junctions in human carcinomas. Oncotarget 9(26):18446–18453

    Article  PubMed  PubMed Central  Google Scholar 

  7. Jung H, Jun KH, Jung JH, Chin HM, Park WB (2011) The expression of claudin-1, claudin-2, claudin-3, and claudin-4 in gastric cancer tissue. J Surg Res 167(2):e185–e191

    Article  CAS  PubMed  Google Scholar 

  8. Ahmad R, Kumar B, Pan K, Dhawan P, Singh AB (2017) HDAC-4 regulates claudin-2 expression in EGFR-ERK1/2 dependent manner to regulate colonic epithelial cell differentiation. Oncotarget 8(50):87718–87736

    Article  PubMed  PubMed Central  Google Scholar 

  9. Hwang TL, Changchien TT, Wang CC, Wu CM (2014) Claudin-4 expression in gastric cancer cells enhances the invasion and is associated with the increased level of matrix metalloproteinase-2 and -9 expression. Oncol Lett 8(3):1367–1371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Son HJ, An CH, Yoo NJ, Lee SH (2020) Tight junction-related CLDN5 and CLDN6 genes, and gap junction-related GJB6 and GJB7 genes are somatically mutated in gastric and colorectal cancers. Pathol Oncol Res 26(3):1983–1987

    Article  CAS  PubMed  Google Scholar 

  11. Hashimoto I, Oshima T (2020) Claudins and gastric cancer: an overview. Cancers (Basel) 14(2):290

    Article  Google Scholar 

  12. Stadler CR, Bähr-Mahmud H, Plum LM, Schmoldt K, Kölsch AC, Türeci Ö et al (2016) Characterization of the first-in-class T-cell-engaging bispecific single-chain antibody for targeted immunotherapy of solid tumors expressing the oncofetal protein claudin 6. Oncoimmunology 5(3):e1091555

    Article  PubMed  Google Scholar 

  13. Ushiku T, Shinozaki-Ushiku A, Maeda D, Morita S, Fukayama M (2012) Distinct expression pattern of claudin-6, a primitive phenotypic tight junction molecule, in germ cell tumours and visceral carcinomas. Histopathology 61(6):1043–1056

    Article  PubMed  Google Scholar 

  14. Manku G, Hueso A, Brimo F, Chan P, Gonzalez-Peramato P, Jabado N et al (2016) Changes in the expression profiles of claudins during gonocyte differentiation and in seminomas. Andrology 4(1):95–110

    Article  CAS  PubMed  Google Scholar 

  15. Zavala-Zendejas VE, Torres-Martinez AC, Salas-Morales B, Fortoul TI, Montano LF, Rendon-Huerta EP (2011) Claudin-6, 7, or 9 overexpression in the human gastric adenocarcinoma cell line AGS increases its invasiveness, migration, and proliferation rate. Cancer Invest 29(1):1–11

    Article  PubMed  Google Scholar 

  16. Torres-Martinez AC, Gallardo-Vera JF, Lara-Holguin AN, Montano LF, Rendon-Huerta EP (2017) Claudin-6 enhances cell invasiveness through claudin-1 in AGS human adenocarcinoma gastric cancer cells. Exp Cell Res 350(1):226–235

    Article  CAS  PubMed  Google Scholar 

  17. Brabletz S, Schuhwerk H, Brabletz T, Stemmler MP (2021) Dynamic EMT: a multi-tool for tumor progression. EMBO J 40(18):e108647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chen T, You Y, Jiang H, Wang ZZ (2017) Epithelial-mesenchymal transition (EMT): a biological process in the development, stem cell differentiation, and tumorigenesis. J Cell Physiol 232(12):3261–3272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gowrikumar S, Singh AB, Dhawan P (2019) Role of claudin proteins in regulating cancer stem cells and chemoresistance-potential implication in disease prognosis and therapy. Int J Mol Sci 21(1):53

    Article  PubMed  PubMed Central  Google Scholar 

  20. Akhavan MM, Karimi M, Ghodrati M, Falahtpishe H (2011) AT1 receptors activation enhances the expression of MMP-2, MMP-13 and VEGF but not MMP-9 in B16F10 melanoma cells. Pak J Biol Sci 14(17):821–830

    Article  CAS  PubMed  Google Scholar 

  21. Sakuma K, Aoki M, Kannagi R (2012) Transcription factors c-Myc and CDX2 mediate E-selectin ligand expression in colon cancer cells undergoing EGF/bFGF-induced epithelial-mesenchymal transition. Proc Natl Acad Sci USA 109(20):7776–7781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mazzoni A, Maggi L, Siracusa F, Ramazzotti M, Rossi MC, Santarlasci V et al (2019) Eomes controls the development of Th17-derived (non-classic) Th1 cells during chronic inflammation. Eur J Immunol 49(1):79–95

    Article  CAS  PubMed  Google Scholar 

  23. Carvalho BS, Irizarry RA (2010) A framework for oligonucleotide microarray preprocessing. Bioinformatics 26(19):2363–2367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W et al (2015) limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43(7):e47

    Article  PubMed  PubMed Central  Google Scholar 

  25. Falcon S, Gentleman R (2007) Using GOstats to test gene lists for GO term association. Bioinformatics 23(2):257–258

    Article  CAS  PubMed  Google Scholar 

  26. Fu Y, Li H, Hao X (2017) The self-renewal signaling pathways utilized by gastric cancer stem cells. Tumour Biol 39(4):1010428317697577

    Article  PubMed  Google Scholar 

  27. Zhang C, Li C, He F, Cai Y, Yang H (2011) Identification of CD44+CD24+ gastric cancer stem cells. J Cancer Res Clin Oncol 137(11):1679–1686

    Article  CAS  PubMed  Google Scholar 

  28. Chang JC (2016) Cancer stem cells: role in tumor growth, recurrence, metastasis, and treatment resistance. Medicine (Baltimore) 95(1 Suppl 1):S20–S25

    Article  CAS  PubMed  Google Scholar 

  29. Rawla P, Barsouk A (2019) Epidemiology of gastric cancer: global trends, risk factors and prevention. Prz Gastroenterol 14(1):26–38

    CAS  PubMed  Google Scholar 

  30. Nassar D, Blanpain C (2016) Cancer stem cells: basic concepts and therapeutic implications. Annu Rev Pathol 11:47–76

    Article  CAS  PubMed  Google Scholar 

  31. Najafi M, Mortezaee K, Majidpoor J (2019) Cancer stem cell (CSC) resistance drivers. Life Sci 234:116781

    Article  CAS  PubMed  Google Scholar 

  32. Vlashi E, Pajonk F (2015) Cancer stem cells, cancer cell plasticity and radiation therapy. Semin Cancer Biol 31:28–35

    Article  CAS  PubMed  Google Scholar 

  33. Ishizawa K, Rasheed ZA, Karisch R, Wang Q, Kowalski J, Susky E et al (2010) Tumor-initiating cells are rare in many human tumors. Cell Stem Cell 7(3):279–282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rasheed ZA, Yang J, Wang Q, Kowalski J, Freed I, Murter C et al (2010) Prognostic significance of tumorigenic cells with mesenchymal features in pancreatic adenocarcinoma. J Natl Cancer Inst 102(5):340–351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yang ZF, Ho DW, Ng MN, Lau CK, Yu WC, Ngai P et al (2008) Significance of CD90+ cancer stem cells in human liver cancer. Cancer Cell 13(2):153–166

    Article  CAS  PubMed  Google Scholar 

  36. Dalerba P, Dylla SJ, Park IK, Liu R, Wang X, Cho RW et al (2007) Phenotypic characterization of human colorectal cancer stem cells. Proc Natl Acad Sci USA 104(24):10158–10163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nguyen PH, Giraud J, Chambonnier L, Dubus P, Wittkop L, Belleannee G et al (2017) Characterization of biomarkers of tumorigenic and chemoresistant cancer stem cells in human gastric carcinoma. Clin Cancer Res 23(6):1586–1597

    Article  CAS  PubMed  Google Scholar 

  38. Nguyen PH, Giraud J, Staedel C, Chambonnier L, Dubus P, Chevret E et al (2016) All-trans retinoic acid targets gastric cancer stem cells and inhibits patient-derived gastric carcinoma tumor growth. Oncogene 35(43):5619–5628

    Article  CAS  PubMed  Google Scholar 

  39. Ayob AZ, Ramasamy TS (2018) Cancer stem cells as key drivers of tumour progression. J Biomed Sci 25(1):20

    Article  PubMed  PubMed Central  Google Scholar 

  40. Tabaries S, Siegel PM (2017) The role of claudins in cancer metastasis. Oncogene 36(9):1176–1190

    Article  CAS  PubMed  Google Scholar 

  41. Ben-David U, Nudel N, Benvenisty N (2013) Immunologic and chemical targeting of the tight-junction protein claudin-6 eliminates tumorigenic human pluripotent stem cells. Nat Commun 4:1992

    Article  PubMed  Google Scholar 

  42. Sugimoto K, Ichikawa-Tomikawa N, Satohisa S, Akashi Y, Kanai R, Saito T et al (2013) The tight-junction protein claudin-6 induces epithelial differentiation from mouse F9 and embryonic stem cells. PLoS ONE 8(10):e75106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wang L, Xue Y, Shen Y, Li W, Cheng Y, Yan X et al (2012) Claudin 6: a novel surface marker for characterizing mouse pluripotent stem cells. Cell Res 22(6):1082–1085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Li J (2021) Dysregulated expression of claudins in cancer. Oncol Lett 22(3):641

    Article  PubMed  PubMed Central  Google Scholar 

  45. Rendon-Huerta E, Teresa F, Teresa GM, Xochitl GS, Georgina AF, Veronica ZZ et al (2010) Distribution and expression pattern of claudins 6, 7, and 9 in diffuse- and intestinal-type gastric adenocarcinomas. J Gastrointest Cancer 41(1):52–59

    Article  CAS  PubMed  Google Scholar 

  46. Yang M, Li Y, Ruan Y, Lu Y, Lin D, Xie Y et al (2018) CLDN6 enhances chemoresistance to ADM via AF-6/ERKs pathway in TNBC cell line MDAMB231. Mol Cell Biochem 443(1–2):169–180

    Article  CAS  PubMed  Google Scholar 

  47. Kohmoto T, Masuda K, Shoda K, Takahashi R, Ujiro S, Tange S et al (2020) Claudin-6 is a single prognostic marker and functions as a tumor-promoting gene in a subgroup of intestinal type gastric cancer. Gastric Cancer 23(3):403–417

    Article  CAS  PubMed  Google Scholar 

  48. Chen C, Zhao S, Karnad A, Freeman JW (2018) The biology and role of CD44 in cancer progression: therapeutic implications. J Hematol Oncol 11(1):64

    Article  PubMed  PubMed Central  Google Scholar 

  49. Jaggupilli A, Elkord E (2012) Significance of CD44 and CD24 as cancer stem cell markers: an enduring ambiguity. Clin Dev Immunol 2012:708036

    Article  PubMed  PubMed Central  Google Scholar 

  50. Hui D, Chen J, Jiang Y, Pan Y, Zhang Z, Dong M et al (2020) CD44+CD24-/low sphere-forming cells of EBV-associated gastric carcinomas show immunosuppressive effects and induce tregs partially through production of PGE2. Exp Cell Res 390(2):111968

    Article  CAS  PubMed  Google Scholar 

  51. Lizarraga-Verdugo E, Avendano-Felix M, Bermudez M, Ramos-Payan R, Perez-Plasencia C, Aguilar-Medina M (2020) Cancer stem cells and its role in angiogenesis and vasculogenic mimicry in gastrointestinal cancers. Front Oncol 10:413

    Article  PubMed  PubMed Central  Google Scholar 

  52. Cao X, Cao D, Jin M, Jia Z, Kong F, Ma H et al (2014) CD44 but not CD24 expression is related to poor prognosis in non-cardia adenocarcinoma of the stomach. BMC Gastroenterol 14:157

    Article  PubMed  PubMed Central  Google Scholar 

  53. Zhu Y, Wang C, Becker SA, Hurst K, Nogueira LM, Findlay VJ et al (2018) miR-145 Antagonizes SNAI1-mediated stemness and radiation resistance in colorectal cancer. Mol Ther 26(3):744–754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. van Schaijik B, Davis PF, Wickremesekera AC, Tan ST, Itinteang T (2018) Subcellular localisation of the stem cell markers OCT4, SOX2, NANOG, KLF4 and c-MYC in cancer: a review. J Clin Pathol 71(1):88–91

    Article  PubMed  Google Scholar 

  55. Arndt GM, Dossey L, Cullen LM, Lai A, Druker R, Eisbacher M et al (2009) Characterization of global microRNA expression reveals oncogenic potential of miR-145 in metastatic colorectal cancer. BMC Cancer 9:374

    Article  PubMed  PubMed Central  Google Scholar 

  56. Das PK, Islam F, Lam AK (2020) The roles of cancer stem cells and therapy resistance in colorectal carcinoma. Cells 9(6):1392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bakir B, Chiarella AM, Pitarresi JR, Rustgi AK (2020) EMT, MET, plasticity, and tumor metastasis. Trends Cell Biol 30(10):764–776

    Article  PubMed  PubMed Central  Google Scholar 

  58. Zhan M, Wang H, Chen T, Chen W, Yang L, He M et al (2015) NOX1 mediates chemoresistance via HIF1α/MDR1 pathway in gallbladder cancer. Biochem Biophys Res Commun 468(1–2):79–85

    Article  CAS  PubMed  Google Scholar 

  59. Mercurio AM (2019) VEGF/neuropilin signaling in cancer stem cells. Int J Mol Sci 20(3):490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Voog J, Jones DL (2010) Stem cells and the niche: a dynamic duo. Cell Stem Cell 6(2):103–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Barbato L, Bocchetti M, Di Biase A, Regad T (2019) Cancer stem cells and targeting strategies. Cells 8(8):926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Programa de Apoyo a Proyectos de Investigación e Innovación Tecnológica (PAPIIT) grants IN218019 and IN221519, and Programa de Becas Posdoctorales DGAPA-UNAM, Universidad Nacional Autónoma de México, México, supported this work.

Funding

DGAPA-PAPIIT,IN218019,Erika Patricia Rendón-Huerta,IN221519,Luis F Montaño

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by PAM-G, FC-V, and AAdC. The first draft of the manuscript was written by LFM and EPRH and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Erika Patricia Rendón-Huerta.

Ethics declarations

Conflict of interest

The authors declare that no conflict of interest exists.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Medrano-Gonzálezl, P.A., Cruz-Villegas, F., Alarcón del Carmen, A. et al. Claudin-6 increases SNAI1, NANOG and SOX2 gene expression in human gastric adenocarcinoma AGS cells. Mol Biol Rep 49, 11663–11674 (2022). https://doi.org/10.1007/s11033-022-07976-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07976-z

Keywords

Navigation