Skip to main content
Log in

CRISPR/Cas9 is a powerful tool for precise genome editing of legume crops: a review

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Legumes are an imperative source of food and proteins across the globe. They also improve soil fertility through symbiotic nitrogen fixation (SNF). Genome editing (GE) is now a novel way of developing desirable traits in legume crops. Genome editing tools like clustered regularly interspaced short palindromic repeats (CRISPR) system permits a defined genome alteration to improve crop performance. This genome editing tool is reliable, cost-effective, and versatile, and it has to deepen in terms of use compared to other tools. Recently, many novel variations have drawn the attention of plant geneticists, and efforts are being made to develop trans-gene-free cultivars for ensuring biosafety measures. This review critically elaborates on the recent development in genome editing of major legumes crops. We hope this updated review will provide essential informations for the researchers working on legumes genome editing. In general, the CRISPR/Cas9 novel GE technique can be integrated with other techniques like omics approaches and next-generation tools to broaden the range of gene editing and develop any desired legumes traits. Regulatory ethics of CRISPR/Cas9 are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability statement

Not applicable.

References

  1. Cakir Ö, Ucarli C, Tarhan Ç, Pekmez M, Turgut-Kara N (2019) Nutritional and health benefits of legumes and their distinctive genomic properties. Food Sci Tech 39(1):1–12

    Article  Google Scholar 

  2. Rahman MM, Islam MR, Alam MR, Uddin R, Faruq MO (2022) Assessing the effect of different pulse crops under mango orchard in the southern region of Bangladesh. Asian J Plant Soil Sci 7(1):102–107

    Google Scholar 

  3. Malaguti M, Dinelli G, Leoncini E, Bregola V, Bosi S, Cicero AF et al (2014) Bioactive peptides in cereals and legumes: agronomical, biochemical and clinical aspects. Int J Mol Sci 15(11):21120–21135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Messina MJ (1999) Legumes and soybeans: overview of their nutritional profiles and health effects. The Amer J Clinical Nutrit 70(3):439s–50s

    Article  CAS  Google Scholar 

  5. Owen KJ, Clewett TG, Bell KL, Thompson JP (2022) Cereal and Pulse Crops with Improved Resistance to pratylenchus thornei are needed to maximize wheat production and expand crop sequence options. Agronomy 12(3):573

    Article  CAS  Google Scholar 

  6. Carbas B, Machado N, Pathania S, Brites C, Rosa EA, Barros AI (2021) Potential of legumes: nutritional value, bioactive properties, innovative food products, and application of eco-friendly tools for their assessment. Food Rev Int 1–29. https://doi.org/10.1080/87559129.2021.1901292

  7. Wang N, Xia X, Jiang T, Li L, Zhang P, Niu L et al (2021) In planta haploid induction by genome editing of DMP in the model legume Medicago truncatula. Plant Biotech J 20:22–24

    Article  CAS  Google Scholar 

  8. Rasheed A, Gill RA, Hassan MU, Mahmood A, Qari S, Zaman QU et al (2021) A critical review: recent advancements in the use of CRISPR/Cas9 technology to enhance crops and alleviate global food crises. Curr Iss Mol Biol 43(3):1950–1976

    Article  CAS  Google Scholar 

  9. Natarajan S, Luthria D, Bae H, Lakshman D, Mitra, AJJoa (2013) chemistry f Transgenic soybeans and soybean protein analysis: an overview. Agric Food Chem 61(48):11736-43

  10. Zhang C, Wohlhueter R, Zhang H (2016) Genetically modified foods: a critical review of their promise and problems. Food Sci Hum Wellness 5:116–123

    Article  Google Scholar 

  11. James C, Global Status of Commercialized Biotech/GM Crops (2013) : : ISAAA Brief No. 46. International Service for the Acquisition of Agri-biotech Applications (ISAAA); 2013

  12. Amoroso LJHH (2016) The second international conference on nutrition: implications for hidden hunger. World Rev Nutr Diet 115:142 – 52

  13. Jacob C, Carrasco B, Schwember AR (2016) Advances in breeding and biotechnology of legume crops. Plant Cell Tissue Organ Culture (PCTOC) 127(3):561–584

    Article  CAS  Google Scholar 

  14. Rasheed A, Hassan M, Aamer M, Bian J, Xu Z, He X et al (2020) Iron toxicity, tolerance and quantitative trait loci mapping in rice; a review. App Ecol Environ Res 18:7483–7498

    Article  Google Scholar 

  15. Rasheed A, Hassan MU, Aamer M, Batool M, Sheng F, Ziming W et al (2020) A critical review on the improvement of drought stress tolerance in rice (Oryza sativa L.). Not Bot Horti Agrob Cluj-Nap 48(4):1756–1788

    Article  CAS  Google Scholar 

  16. Rasheed A, Hassan MU, Fahad S, Aamer M, Batool M, Ilyas M et al (2021) Heavy Metals Stress and Plants Defense Responses. Sustainable Soil and Land Management and Climate Change. CRC Press, pp 57–82

  17. Biswas S, Zhang D, Shi J (2021) CRISPR/Cas systems: opportunities and challenges for crop breeding. Plant Cell Rep:1–20

  18. Scheben A, Wolter F, Batley J, Puchta H, Edwards D (2017) Towards CRISPR/Cas crops–bringing together genomics and genome editing. New Phyt 216(3):682–698

    Article  CAS  Google Scholar 

  19. Watson BN, Steens JA, Staals RH, Westra ER, van Houte S (2021) Coevolution between bacterial CRISPR-Cas systems and their bacteriophages. Cell Host Microb 29(5):715–725

    Article  CAS  Google Scholar 

  20. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kaminski MM, Abudayyeh OO, Gootenberg JS, Zhang F, Collins JJ (2021) CRISPR-based diagnostics. Nat Biomed Engin 5(7):643–656

    Article  CAS  Google Scholar 

  22. Razzaq A, Kaur P, Akhter N, Wani SH, Saleem F (2021) Next-generation breeding strategies for climate-ready crops. Front Plant Sci 12:620420

    Article  PubMed  PubMed Central  Google Scholar 

  23. Zhu C, Bortesi L, Baysal C, Twyman RM, Fischer R, Capell T et al (2017) Characteristics of genome editing mutations in cereal crops. Tre Plant Sci 22(1):38–52

    Article  CAS  Google Scholar 

  24. Yang Z, Yu Y, Tay YX, Yue GH (2022) Genome editing and its applications in genetic improvement in aquaculture. Rev Aquacul 14(1):178–191

    Article  Google Scholar 

  25. Jain S, Shukla S, Yang C, Zhang M, Fatma Z, Lingamaneni M et al (2021) TALEN outperforms Cas9 in editing heterochromatin target sites. Nat Comm 12(1):1–10

    Article  CAS  Google Scholar 

  26. Maeder ML, Gersbach CA (2016) Genome-editing technologies for gene and cell therapy. Mol Th 24(3):430–446

    Article  CAS  Google Scholar 

  27. Gilles AF, Averof M (2014) Functional genetics for all: engineered nucleases, CRISPR and the gene editing revolution. EvoDevo 5(1):1–13

    Article  CAS  Google Scholar 

  28. Sauer NJ, Mozoruk J, Miller RB, Warburg ZJ, Walker KA, Beetham PR et al (2016) Oligonucleotide-directed mutagenesis for precision gene editing. Plant Biotech J 14(2):496–502

    Article  CAS  Google Scholar 

  29. Afzal S, Sirohi P, Singh NK (2020) A review of CRISPR associated genome engineering: application, advances and future prospects of genome targeting tool for crop improvement. Biotech Lett 42:1611–1632

    Article  CAS  Google Scholar 

  30. Wang X, Tu M, Wang Y, Yin W, Zhang Y, Wu H et al (2021) Whole-genome sequencing reveals rare off-target mutations in CRISPR/Cas9-edited grapevine. Hort Res 8. https://doi.org/10.1038/s41438-021-00549-

  31. Farooq M, Bashir M, Khan M, Iqbal B, Ali Q (2021) Role of crispr to improve abiotic stress tolerance in crop plants. Biol Clin Sci Res J 2021(1). https://doi.org/10.54112/bcsrj.v2021i1.69

  32. Bhardwaj A, Nain V (2021) TALENs—an indispensable tool in the era of CRISPR: a mini review. J Gen Engin Biotec 19(1):1–10

    Google Scholar 

  33. Chang AY (2022) Genome engineering with CRISPR/Cas9, ZFNs, and TALENs. CRISPR Genome Surgery in Stem Cells and Disease Tissues. Elsevier, pp 39–45

  34. Fu YW, Dai XY, Wang WT, Yang ZX, Zhao JJ, Zhang JP et al (2021) Dynamics and competition of CRISPR–Cas9 ribonucleoproteins and AAV donor-mediated NHEJ, MMEJ and HDR editing. Nucl Acids Res 49(2):969–985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kang YJ, Kim SK, Kim MY, Lestari P, Kim KH, Ha B-K et al (2014) Genome sequence of mungbean and insights into evolution within Vigna species. Nat Comm 5(1):1–9

    Article  Google Scholar 

  36. Marton I, Zuker A, Shklarman E, Zeevi V, Tovkach A, Roffe S et al (2010) Nontransgenic genome modification in plant cells. Plant Physiol 154(3):1079–1087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Marcaida MJ, Prieto J, Redondo P, Nadra AD, Alibés A, Serrano L et al (2008) Crystal structure of I-DmoI in complex with its target DNA provides new insights into meganuclease engineering. Pro Nat Acad Sci 105(44):16888–16893

    Article  CAS  Google Scholar 

  38. Vanamee ÉS, Santagata S, Aggarwal AK (2001) FokI requires two specific DNA sites for cleavage. J Mol Biol 309(1):69–78

    Article  CAS  PubMed  Google Scholar 

  39. Makarova KS, Wolf YI, Iranzo J, Shmakov SA, Alkhnbashi OS, Brouns SJ et al (2020) Evolutionary classification of CRISPR–Cas systems: a burst of class 2 and derived variants. Nat Rev Microbiol 18(2):67–83

    Article  CAS  PubMed  Google Scholar 

  40. Carter J, Wiedenheft B (2015) SnapShot: CRISPR-RNA-guided adaptive immune systems. https://doi.org/10.1016/j.cell.2015.09.011

  41. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339(6121):819–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cao HX, Wang W, Le HT, Vu GT (2016) The power of CRISPR-Cas9-induced genome editing to speed up plant breeding. Int J Gen 2016:5078796

  43. Badhan S, Ball AS, Mantri N (2021) First report of CRISPR/Cas9 mediated DNA-free editing of 4CL and RVE7 genes in chickpea protoplasts. Inte J Mol Sci 22(1):396

    Article  CAS  Google Scholar 

  44. Sfeir A, Symington LS (2015) Microhomology-mediated end joining: a back-up survival mechanism or dedicated pathway? Trends Biochem Sci 40(11):701–714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chen H, Lin Y (2013) Promise and issues of genetically modified crops. Curr Opin Plant Biol 16(2):255–260

    Article  PubMed  Google Scholar 

  46. Turnbull C, Lillemo M, Hvoslef-Eide TA (2021) Global regulation of genetically modified crops amid the gene edited crop boom–a review. Front Plant Sci 12:258

    Article  Google Scholar 

  47. Gupta S, Kumar A, Patel R, Kumar V (2021) Genetically modified crop regulations: scope and opportunity using the CRISPR-Cas9 genome editing approach. Mol Biol Rep 48(5):4851–4863. doi: https://doi.org/10.1007/s11033-021-06477-9

    Article  CAS  PubMed  Google Scholar 

  48. Sturme MH, van der Berg JP, Bouwman LM, De Schrijver A, de Maagd RA, Kleter GA et al (2022) Occurrence and nature of off-target modifications by CRISPR-Cas genome editing in plants. ACS Agricu Scie Tech XXXX, XXX, pp XXX–XXX. https://doi.org/10.1021/acsagscitech.1c00270

  49. Yadav R, Mehrotra M, Singh AK, Niranjan A, Singh R, Sanyal I et al (2017) Improvement in Agrobacterium-mediated transformation of chickpea (Cicer arietinum L.) by the inhibition of polyphenolics released during wounding of cotyledonary node explants. Protoplasma 254(1):253–269

    Article  CAS  PubMed  Google Scholar 

  50. Bhowmik P, Konkin D, Polowick P, Hodgins CL, Subedi M, Xiang D et al (2021) CRISPR/Cas9 gene editing in legume crops: Opportunities and challenges. Leg Sci 3(3):e96

    CAS  Google Scholar 

  51. Zhang P, Du H, Wang J, Pu Y, Yang C, Yan R et al (2020) Multiplex CRISPR/Cas9-mediated metabolic engineering increases soya bean isoflavone content and resistance to soya bean mosaic virus. Plant Biotech J 18(6):1384–1395

    Article  CAS  Google Scholar 

  52. Deng F, Zeng F, Shen Q, Abbas A, Cheng J, Jiang W, Chen G, Shah AN, Holford P, Tanveer M, Zhang D (2022) Molecular evolution and functional modification of plant miRNAs with CRISPR. Trends in plant science.

  53. Dewir YH, Murthy HN, Ammar MH, Alghamdi SS, Al-Suhaibani NA, Alsadon AA et al (2016) In vitro rooting of leguminous plants: difficulties, alternatives, and strategies for improvement. Hort Environ Biotech 57(4):311–322

    Article  CAS  Google Scholar 

  54. Negi J, Rathinam M, Sreevathsa R, Kumar PA (2021) Transgenic Pigeonpea (Cajanus cajan (L). Millsp.). Genetically Modified Crops. Springer, pp 79–96

  55. Sehaole EKM (2022) Genetic Transformation in Agro-Economically Important Legumes. Legymes 1. doi:https://doi.org/10.5772/intechopen.101262

  56. Makarova KS, Wolf YI, Alkhnbashi OS, Costa F, Shah SA, Saunders SJ et al (2015) An updated evolutionary classification of CRISPR–Cas systems. Nat Rev Microbiol 13(11):722–736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Mohanraju P, Makarova KS, Zetsche B, Zhang F, Koonin EV, Van der Oost J (2016) Diverse evolutionary roots and mechanistic variations of the CRISPR-Cas systems. Science 353(6299):aad5147

    Article  PubMed  CAS  Google Scholar 

  58. Gaudelli NM, Komor AC, Rees HA, Packer MS, Badran AH, Bryson DI et al (2017) Programmable base editing of A• T to G• C in genomic DNA without DNA cleavage. Nature 551(7681):464–471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhu H, Li C, Gao CJNRMCB (2020) Applications of CRISPR–Cas in agriculture and plant Biotechnology. 21:661–67711

  60. Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR (2016) Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533(7603):420–424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Li C, Zhang R, Meng X, Chen S, Zong Y, Lu C et al (2020) Targeted, random mutagenesis of plant genes with dual cytosine and adenine base editors. Nat Biotech 38(7):875–882

    Article  CAS  Google Scholar 

  62. Grünewald J, Zhou R, Lareau CA, Garcia SP, Iyer S, Miller BR et al (2020) A dual-deaminase CRISPR base editor enables concurrent adenine and cytosine editing. Nat Biotech 38(7):861–864

    Article  CAS  Google Scholar 

  63. Zong Y, Wang Y, Li C, Zhang R, Chen K, Ran Y et al (2017) Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion. Nat Biotech 35(5):438–440

    Article  CAS  Google Scholar 

  64. Anzalone AV, Randolph PB, Davis JR, Sousa AA, Koblan LW, Levy JM et al (2019) Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576(7785):149–157. doi: https://doi.org/10.1038/s41586-019-1711-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Butt H, Rao GS, Sedeek K, Aman R, Kamel R, Mahfouz M (2020) Engineering herbicide resistance via prime editing in rice. Plant Biotech J 18(12):2370

    Article  CAS  Google Scholar 

  66. Tang X, Sretenovic S, Ren Q, Jia X, Li M, Fan T et al (2020) Plant prime editors enable precise gene editing in rice cells. Mol Plant 13(5):667–670

    Article  CAS  PubMed  Google Scholar 

  67. Chen PJ, Hussmann JA, Yan J, Knipping F, Ravisankar P, Chen P-F et al (2021) Enhanced prime editing systems by manipulating cellular determinants of editing outcomes. Cell 184:5635–5652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. FAOSTAT database collections. FAO, FAO, Rome (2017) http://faostat.fao.org. (accessed 3 Apr 2017) (2017)

  69. FAOSTAT database collections. FAO, FAO, Rome (2019) http://faostat.fao.org. (accessed 17 February 2022) (2022)

  70. Merga B, Haji J (2019) Economic importance of chickpea: Production, value, and world trade. Cogent Food Agricul 5(1):1615718

    Article  Google Scholar 

  71. Nkomo GV, Sedibe MM, Mofokeng MA (2021) Production constraints and improvement strategies of cowpea (Vigna unguiculata L. Walp.) genotypes for drought tolerance. Int J Agro 2021:5536417

  72. Kanazashi Y, Hirose A, Takahashi I, Mikami M, Endo M, Hirose S et al (2018) Simultaneous site-directed mutagenesis of duplicated loci in soybean using a single guide RNA. Plant Cell Rep 37(3):553–563

    Article  CAS  PubMed  Google Scholar 

  73. Narusaka Y, Narusaka M, Yamasaki S, Iwabuchi M (2012) Methods to transfer foreign genes to plants. Agricultural Biological Sciences” Transgenic Plants-Advances Limitations” In Tech Publishing:173 – 88

  74. Kim H, Kim S-T, Ryu J, Kang B-C, Kim J-S, Kim S-G (2017) CRISPR/Cpf1-mediated DNA-free plant genome editing. Nat Comm 8(1):1–7

    CAS  Google Scholar 

  75. Chen L, Nan H, Kong L, Yue L, Yang H, Zhao Q et al (2020) Soybean AP1 homologs control flowering time and plant height. J Integrat Plant Biol 62(12):1868–1879

    Article  CAS  Google Scholar 

  76. Cai Y, Chen L, Sun S, Wu C, Yao W, Jiang B et al (2018) CRISPR/Cas9-mediated deletion of large genomic fragments in soybean. Int J Mol Sci 19(12):3835

    Article  PubMed Central  CAS  Google Scholar 

  77. Cai Y, Wang L, Chen L, Wu T, Liu L, Sun S et al (2020) Mutagenesis of GmFT2a and GmFT5a mediated by CRISPR/Cas9 contributes for expanding the regional adaptability of soybean. Plant Biotech J 18(1):298–309

  78. Bao A, Chen H, Chen L, Chen S, Hao Q, Guo W et al (2019) CRISPR/Cas9-mediated targeted mutagenesis of GmSPL9 genes alters plant architecture in soybean. BMC Plant Biol 19(1):1–12

    Article  CAS  Google Scholar 

  79. Calles T, Del Castello R, Baratelli M, Xipsiti M, Navarro D (2019) The International Year of Pulses—Final Report. Food Argiculture Organisation of the, Rome. United Nations pp. Licence: CC BY-NC-SA 3.0 IGO

    Google Scholar 

  80. Wang J, Kuang H, Zhang Z, Yang Y, Yan L, Zhang M et al (2020) Generation of seed lipoxygenase-free soybean using CRISPR-Cas9. The Crop J 8(3):432–439

    Article  Google Scholar 

  81. Bai M, Yuan J, Kuang H, Gong P, Li S, Zhang Z et al (2020) Generation of a multiplex mutagenesis population via pooled CRISPR-Cas9 in soya bean. Plant Biotech J 18(3):721–731

    Article  CAS  Google Scholar 

  82. Carrijo J, Illa-Berenguer E, LaFayette P, Torres N, Aragão FJ, Parrott W et al (2021) Two efficient CRISPR/Cas9 systems for gene editing in soybean. Transg Res 30(3):239–249

    Article  CAS  Google Scholar 

  83. Duan K, Cheng Y, Ji J, Wang C, Wei Y, Wang Y (2021) Large chromosomal segment deletions by CRISPR/LbCpf1-mediated multiplex gene editing in soybean. J Integrat Plant Biol 63(9):1620–1631

    Article  CAS  Google Scholar 

  84. Yang Z, Du H, Xing X, Li W, Kong Y, Li X et al (2022) A small heat shock protein, GmHSP17. 9, from nodule confers symbiotic nitrogen fixation and seed yield in soybean. Plant Biotech J 20(1):103–115

    Article  CAS  Google Scholar 

  85. Varshney RK, Song C, Saxena RK, Azam S, Yu S, Sharpe AG et al (2013) Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nat Biotech 31(3):240–246

    Article  CAS  Google Scholar 

  86. Das A, Datta S, Thakur S, Shukla A, Ansari J, Sujayanand G et al (2017) Expression of a chimeric gene encoding insecticidal crystal protein Cry1Aabc of Bacillus thuringiensis in chickpea (Cicer arietinum L.) confers resistance to gram pod borer (Helicoverpa armigera Hubner.). Front Plant Sci 8:1423

    Article  PubMed  PubMed Central  Google Scholar 

  87. Das Bhowmik SS, Cheng AY, Long H, Tan GZH, Hoang TML, Karbaschi MR et al (2019) Robust genetic transformation system to obtain non-chimeric transgenic chickpea. Front Plant Sci 10:524

    Article  PubMed  PubMed Central  Google Scholar 

  88. Rezaei MK, Deokar A, Tar’an B (2016) Identification and expression analysis of candidate genes involved in carotenoid biosynthesis in chickpea seeds. Front Plant Sci 7:1867

    Article  PubMed  PubMed Central  Google Scholar 

  89. Kim SK, Nair RM, Lee J, Lee S-H (2015) Genomic resources in mungbean for future breeding programs. Fron Plant Sci 6:626

    Google Scholar 

  90. Chauhan R, Singh A, Sharma KR, Ali A (2018) Screening of mungbean (Vigna radiata L.) germplasm against major sucking pest. Pharm Phytochem 7:1784–1787

    CAS  Google Scholar 

  91. Fatokun C, Danesh D, Young N, Stewart E (1993) Molecular taxonomic relationships in the genus Vigna based on RFLP analysis. Theoret App Gen 86(1):97–104

    Article  CAS  Google Scholar 

  92. War AR, Murugesan S, Boddepalli VN, Srinivasan R, Nair RM (2017) Mechanism of resistance in mungbean (Vigna radiata (L.) R. Wilczek var. radiata] to bruchids, Callosobruchus spp.(Coleoptera: Bruchidae). Front Plant Sci 8:1031

    Article  PubMed  PubMed Central  Google Scholar 

  93. Schafleitner R, Nair RM, Rathore A, Wang Y-w, Lin C-y, Chu S-h et al (2015) The AVRDC–The World Vegetable Center mungbean (Vigna radiata) core and mini core collections. BMC Gen 16(1):1–11

    Article  Google Scholar 

  94. Ji J, Zhang C, Sun Z, Wang L, Duanmu D, Fan Q (2019) Genome editing in cowpea Vigna unguiculata using CRISPR-Cas9. Int J Mol Sci 20(10):2471

    Article  CAS  PubMed Central  Google Scholar 

  95. Mishra GP, Dikshit HK, SV R, Tripathi K, Kumar RR, Aski M et al (2020) Yellow mosaic disease (YMD) of mungbean (Vigna radiata (L.) Wilczek): Current status and management opportunities. Front Plant Sci 11:918

    Article  PubMed  PubMed Central  Google Scholar 

  96. Sehgal A, Sita K, Rehman A, Farooq M, Kumar S, Yadav R et al (2021) Lentil. Crop Physiology Case Histories for Major Crops. Elsevier, pp 408–428

  97. Sarker R, Biswas A, Mustafa BM, Mahbub S, Hoque M (2003) Agrobacterium-mediated transformation of lentil (Lens culinaris Medik.). Plant Tissue Cult 13(1):1–11

    Google Scholar 

  98. Sarker RH, Das SK, Shethi KJ, Hoque MI (2019) Genetic transformation. Lentils. Elsevier, pp 141–202

  99. Akcay UC, Mahmoudian M, Kamci H, Yucel M, Oktem H (2009) Agrobacterium tumefaciens-mediated genetic transformation of a recalcitrant grain legume, lentil (Lens culinaris Medik). Plant Cell Rep 28(3):407–417

    Article  PubMed  CAS  Google Scholar 

  100. D’erfurth I, Le Signor C, Aubert G, Sanchez M, Vernoud V, Darchy B et al (2012) A role for an endosperm-localized subtilase in the control of seed size in legumes. New Phytol 196(3):738–751

    Article  PubMed  CAS  Google Scholar 

  101. Asghar MJ, Hameed A, Rizwan M, Shahid M, Atif RM (2021) Lentil Wild Genetic Resource: A Potential Source of Genetic Improvement for Biotic and Abiotic Stress Tolerance. Wild Germplasm for Genetic Improvement in Crop Plants. Elsevier, pp 321–341

  102. McMurray LS, Preston C, Vandenberg A, Mao D, Bett KE, Paull JG (2019) Induced novel psbA mutation (Ala251 to Thr) in higher plants confers resistance to PSII inhibitor metribuzin in Lens culinaris. Pest Manag Sci 75(6):1564–1570

    Article  CAS  PubMed  Google Scholar 

  103. Wilson FM, Harrison K, Armitage AD, Simkin AJ, Harrison RJ (2019) CRISPR/Cas9-mediated mutagenesis of phytoene desaturase in diploid and octoploid strawberry. Plant Methods 15(1):1–13

    Article  Google Scholar 

  104. Sun L, Hu R, Shen G, Zhang H (2013) Genetic engineering peanut for higher drought-and salt-tolerance. Food Nutrit Sci 4:33008

    Google Scholar 

  105. Liu S, Su L, Liu S, Zeng X, Zheng D, Hong L et al (2016) Agrobacterium rhizogenes-mediated transformation of Arachis hypogaea: an efficient tool for functional study of genes. Biotech Biotechnol Equip 30(5):869–878

    Article  CAS  Google Scholar 

  106. Yue J-J, Yuan J-L, Wu F-H, Yuan Y-H, Cheng Q-W, Hsu C-T et al (2021) Protoplasts: From Isolation to CRISPR/Cas Genome Editing Application. Front Gen Edit 3:717017

    Article  Google Scholar 

  107. Yuan M, Zhu J, Gong L, He L, Lee C, Han S et al (2019) Mutagenesis of FAD2 genes in peanut with CRISPR/Cas9 based gene editing. BMC Biotech 19(1):1–7

    Article  Google Scholar 

  108. Biswas S, Wahl NJ, Thomson MJ, Cason JM, McCutchen BF, Septiningsih EM (2022) Optimization of Protoplast Isolation and Transformation for a Pilot Study of Genome Editing in Peanut by Targeting the Allergen Gene Ara h 2. Int J Mol Sci 23(2):837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Shu H, Luo Z, Peng Z, Wang J (2020) The application of CRISPR/Cas9 in hairy roots to explore the functions of AhNFR1 and AhNFR5 genes during peanut nodulation. BMC Plant Biol 20(1):1–15

    Article  CAS  Google Scholar 

  110. Wei HH, Yu ST, Wang ZW, Yang Z, Song GS, Wang XZ et al (2021) In planta genetic transformation to produce CRISPRed high-oleic peanut. Preprint Res Squ. doi:https://doi.org/10.21203/rs.3.rs-1096211/v1

    Article  Google Scholar 

  111. Che P, Chang S, Simon MK, Zhang Z, Shaharyar A, Ourada J et al (2021) Developing a rapid and highly efficient cowpea regeneration, transformation and genome editing system using embryonic axis explants. The Plant J 106(3):817–830

    Article  CAS  PubMed  Google Scholar 

  112. Singh B (2020) Cowpea: the food legume of the 21st century. John Wiley & Sons

  113. Bakshi S, Sadhukhan A, Mishra S, Sahoo L (2011) Improved Agrobacterium-mediated transformation of cowpea via sonication and vacuum infiltration. Plant Cell Rep 30(12):2281–2292

    Article  CAS  PubMed  Google Scholar 

  114. Wolabu TW, Cong L, Park J-J, Bao Q, Chen M, Sun J et al (2020) Development of a highly efficient multiplex genome editing system in outcrossing tetraploid alfalfa (Medicago sativa). Front Plant Sci 11:1063

    Article  PubMed  PubMed Central  Google Scholar 

  115. Bottero E, Massa G, González M, Stritzler M, Tajima H, Gómez C et al (2021) Efficient CRISPR/Cas9 genome editing in alfalfa using a public germplasm. Front Agro 3:661526

    Article  Google Scholar 

  116. Cai Y, Chen L, Liu X, Sun S, Wu C, Jiang B et al (2015) CRISPR/Cas9-mediated genome editing in soybean hairy roots. PLoS ONE 10(8):e0136064

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Li Z, Liu Z-B, Xing A, Moon BP, Koellhoffer JP, Huang L et al (2015) Cas9-guide RNA directed genome editing in soybean. Plant Physiol 169(2):960–970

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Sun X, Hu Z, Chen R, Jiang Q, Song G, Zhang H et al (2015) Targeted mutagenesis in soybean using the CRISPR-Cas9 system. Sci Rep 5(1):1–10

    Google Scholar 

  119. Di Y-H, Sun X-J, Hu Z, Jiang Q-Y, Song G-H, Zhang B et al (2019) Enhancing the CRISPR/Cas9 system based on multiple GmU6 promoters in soybean. Biochem Biophy Res Comm 519(4):819–823

    Article  CAS  Google Scholar 

  120. Zheng N, Li T, Dittman JD, Su J, Li R, Gassmann W et al (2020) CRISPR/Cas9-based gene editing using egg cell-specific promoters in Arabidopsis and soybean. Front Plant Sci 11:800

    Article  PubMed  PubMed Central  Google Scholar 

  121. Do PT, Nguyen CX, Bui HT, Tran LT, Stacey G, Gillman JD et al (2019) Demonstration of highly efficient dual gRNA CRISPR/Cas9 editing of the homeologous GmFAD2–1A and GmFAD2–1B genes to yield a high oleic, low linoleic and α-linolenic acid phenotype in soybean. BMC Plant Biol 19(1):1–14

    Article  CAS  Google Scholar 

  122. Du H, Zeng X, Zhao M, Cui X, Wang Q, Yang H et al (2016) Efficient targeted mutagenesis in soybean by TALENs and CRISPR/Cas9. J Biotech 217:90–97

    Article  CAS  Google Scholar 

  123. Singer SD, Subedi U, Dhariwal G, Kader K, Acharya S, Chen G et al (2021) The CRISPR/Cas9-Mediated Modulation of SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE 8 in Alfalfa Leads to Distinct Phenotypic Outcomes. Front Plant Sci 12:774146–

    Article  PubMed  Google Scholar 

  124. Wang L, Wang L, Tan Q, Fan Q, Zhu H, Hong Z et al (2016) Efficient inactivation of symbiotic nitrogen fixation related genes in Lotus japonicus using CRISPR-Cas9. Front Plant Sci 7:1333

    PubMed  PubMed Central  Google Scholar 

  125. Kumar R, Sharma V, Suresh S, Ramrao DP, Veershetty A, Kumar S et al (2021) Understanding Omics Driven Plant Improvement and de novo Crop Domestication: Some Examples. Front Genet 12:415

    Article  Google Scholar 

  126. Zhong C, Sun S, Zhang X, Duan C, Zhu Z (2020) Fine mapping, candidate gene identification and co-segregating marker development for the Phytophthora root rot resistance gene RpsYD25. Front Gen 11:799

    Article  CAS  Google Scholar 

  127. Chen X, Zhou G, Pang J, Srinives P (2021) Domestication of agronomic traits in legume crops. Front Gen 12:707600

    Article  Google Scholar 

  128. Shi J, Lai J (2015) Patterns of genomic changes with crop domestication and breeding. Curr Opin Plant Biol 24:47–53

    Article  PubMed  CAS  Google Scholar 

  129. Rasheed A, Wassan GM, Khanzada H, Solangi AM, Aamer M, Ruicai H et al (2021) QTL underlying iron toxicity tolerance at seedling stage in backcross recombinant inbred lines (BRILs) population of rice using high density genetic map. Not Bot Horti Agro Cluj-Nap 49(1):12158

    Article  CAS  Google Scholar 

  130. Valle-Echevarria AD, Fumia N, Gore MA, Kantar M (2021) Accelerating crop domestication in the era of gene editing. Plant Breed Rev 45:185–211

    Google Scholar 

  131. Lu S, Dong L, Fang C, Liu S, Kong L, Cheng Q et al (2020) Stepwise selection on homeologous PRR genes controlling flowering and maturity during soybean domestication. Nat Gen 52(4):428–436

    Article  CAS  Google Scholar 

  132. Kumar A, Kumar R, Singh N, Mansoori A (2020) Regulatory framework and policy decisions for genome-edited crops. CRISPR/Cas Genome Editing. Springer; p. 193–201

  133. Gao W, Xu W-T, Huang K-L, Guo M-z, Luo Y-B (2018) Risk analysis for genome editing-derived food safety in China. Food Control 84:128–137

    Article  Google Scholar 

  134. Ishii T (2019) Regulation of Genome Editing in Plant Biotechnology: Japan. Regulation of Genome Editing in Plant Biotechnology. Springer, pp 239–262

  135. Stokstad EP (2020) United States relaxes rules for biotech crops. Sci Magazine Plants Anim Sci Policy. doi:https://doi.org/10.1126/science.abc8305

    Article  Google Scholar 

  136. Myskja BK, Myhr AI (2020) Non-safety assessments of genome-edited organisms: should they be included in regulation? Sci Engin Ethics 26(5):2601–2627

    Article  Google Scholar 

  137. van der Berg JP, Bouwman L, Battaglia E, Kleter GA (2021) Future-Proofing EU Legislation for Genome-Edited Plants: Dutch Stakeholders’ Views on Possible Ways Forward. Agronomy 11(7):1331

    Article  CAS  Google Scholar 

  138. Garland S (2021) EU policy must change to reflect the potential of gene editing for addressing climate change. Global Food Sect. 28:100496

    Article  Google Scholar 

  139. Han Q (2022) China’s Dilemma of Genetically Modified Crops Industrialization. Tufts University

  140. Rasheed A, Fahad S, Hassan MU, Tahir MM, Aamer M, Wu Z (2020) A review on aluminum toxicity and quantitative trait loci maping in rice (Oryza sative L). App Ecol Environ Res 18(3):3951–3961

    Article  Google Scholar 

  141. Rasheed A, Fahad, Shah A, Muhammad, Hassan MU, Tahir MM, Wu Z (2020) Role of genetic factors in regulating cadmium uptake, transport and accumulation mechanisms and quantitative trait loci mapping in rice. a review. App Ecol Environ Res 18(3):4005–4023

    Article  Google Scholar 

  142. Rasheed A, Wassan GM, Khanzada H, Solangi AM, Han R, Li H et al (2021) Identification of genomic regions at seedling related traits in response to aluminium toxicity using a new high-density genetic map in rice (Oryza sativa L.). Gen Res Crop Evol 68(5):1889–1903

    Article  CAS  Google Scholar 

  143. Kumar A, Kumar S, Ramchiary N, Singh P (2021) Role of traditional ethnobotanical knowledge and indigenous communities in achieving Sustainable Development Goals. Sustainability 13(6):3062

    Article  Google Scholar 

Download references

Acknowledgements

The authors would also like to thank the Deanship of Scientific Research at Umm Al-Qura University for contributing support via grant code (19-SCI-1-01-0009).

Author information

Authors and Affiliations

Authors

Contributions

Acknowledgement:?Conceptualization, writing, and original draft preparation, AR., MUH., MN.; review editing and Scientific figures improvement , ANS., ?AAB., AM., DHB., MAA.; Supervision and funding, SHQ.

Corresponding authors

Correspondence to Adnan Noor Shah or Sameer H. Qari.

Ethics declarations

Institutional Review Board Statement

Not applicable.

Informed consent statement

Not applicable.

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rasheed, A., Barqawi, A.A., Mahmood, A. et al. CRISPR/Cas9 is a powerful tool for precise genome editing of legume crops: a review. Mol Biol Rep 49, 5595–5609 (2022). https://doi.org/10.1007/s11033-022-07529-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07529-4

Keywords

Navigation