Skip to main content
Log in

The anti-inflammatory properties of Acanthus Ebracteatus, Barleria Lupulina and Clinacanthus Nutans: a systematic review

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

This appraisal is comprised of the inflammatory studies that have been conducted on Clinacanthus nutans, Acanthus ebracteatus, and Barleria lupulina. The review aims to provide a comprehensive evaluation of the supporting and contradictory evidence on each plants’ anti-inflammatory properties, whilst addressing the gaps in the current literature. The databases used to obtain relevant studies were Google Scholar, ResearchGate, PubMed and Nusearch (University of Nottingham). A total of 13 articles were selected for this review. A. ebracteatus was found to suppress neutrophil migration and weakly inhibits chronic inflammatory cytokines. Furthermore, B. lupulina and C. nutans were shown to possess very similar anti-inflammatory properties. The studies on C. nutans indicated that its anti-inflammatory effect is strongly related to the inhibition of toll-like receptor 4 (TLR4). Moreover, several phytoconstituents isolated from B. lupulina were shown to activate the anti-inflammatory Nrf2 pathway. Overall, all the studies have provided evidence to support the use of these plants as anti-inflammatory herbal remedies. However, their exact mechanism of action and the responsible phytoconstituents are yet to be established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

modified from previous systematic reviews [40, 41]

Fig. 2

Similar content being viewed by others

References

  1. Chen L, Deng H, Cui H et al (2018) Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 9:7204–7218. https://doi.org/10.18632/oncotarget.23208

    Article  PubMed  Google Scholar 

  2. Ayoub SS (2010) Fundamentals of inflammation. Cambridge University Press, Cambridge

    Google Scholar 

  3. Fleit HB (2014) Chronic inflammation. Pathobiology of human disease. Elsevier, Amsterdam, pp 300–314

    Chapter  Google Scholar 

  4. Bost J, Maroon A, Maroon J (2010) Natural anti-inflammatory agents for pain relief. Surg Neurol Int 1:80. https://doi.org/10.4103/2152-7806.73804

    Article  PubMed  PubMed Central  Google Scholar 

  5. Jan SA, Shinwari KZ, Jan AS et al (2017) Ethnobotany and medicinal uses of folklore medicinal plants belonging to family acanthaceae: an updated review. MOJ Biol Med. https://doi.org/10.15406/mojbm.2017.01.00009

    Article  Google Scholar 

  6. Khoo LW, Audrey Kow S, Lee MT et al (2018) A comprehensive review on phytochemistry and pharmacological activities of Clinacanthus nutans (Burm.f.) Lindau. Evid-Based Complement Altern Med 2018:1–39. https://doi.org/10.1155/2018/9276260

    Article  Google Scholar 

  7. Hokputsa S, Harding SE, Inngjerdingen K et al (2004) Bioactive polysaccharides from the stems of the Thai medicinal plant Acanthus ebracteatus: their chemical and physical features. Carbohydr Res 339:753–762. https://doi.org/10.1016/j.carres.2003.11.022

    Article  CAS  PubMed  Google Scholar 

  8. Somchaichana J, Bunaprasert T, Patumraj S (2012) Acanthus ebracteatus vahl. Ethanol extract enhancement of the efficacy of the collagen scaffold in wound closure: a study in a full-thickness-wound mouse model. J Biomed Biotechnol. https://doi.org/10.1155/2012/754527

    Article  PubMed  PubMed Central  Google Scholar 

  9. Singh A, Dhariwal S, Navneet (2018) Pharmalogical applications of Barleria lupulina Lindl. Pharmacological benefits of natural products, 1st edn. JPS Scientific Publications, Tiruvannamalai, pp 107–115

    Google Scholar 

  10. Alam A, Ferdosh S, Ghafoor K et al (2016) Clinacanthus nutans: a review of the medicinal uses, pharmacology and phytochemistry. Asian Pac J Trop Med 9:402–409. https://doi.org/10.1016/j.apjtm.2016.03.011

    Article  CAS  PubMed  Google Scholar 

  11. Shim SY, Aziana I, Khoo BY (2013) Perspective and insight on Clinacanthus nutans Lindau in traditional medicine. Int J Integr Biol 14:7–9

    Google Scholar 

  12. Wanikiat P, Panthong A, Sujayanon P et al (2008) The anti-inflammatory effects and the inhibition of neutrophil responsiveness by Barleria lupulina and Clinacanthus nutans extracts. J Ethnopharmacol 116:234–244. https://doi.org/10.1016/j.jep.2007.11.035

    Article  PubMed  Google Scholar 

  13. Khoo LW, Audrey Kow SF, Maulidiani M et al (2018) Plasma and urine metabolite profiling reveals the protective effect of Clinacanthus nutans in an ovalbumin-induced anaphylaxis model: 1 H-NMR metabolomics approach. J Pharm Biomed Anal 158:438–450. https://doi.org/10.1016/j.jpba.2018.06.038

    Article  CAS  PubMed  Google Scholar 

  14. Zulkipli IN, Rajabalaya R, Idris A et al (2017) Clinacanthus nutans: a review on ethnomedicinal uses, chemical constituents and pharmacological properties. Pharm Biol 55:1093–1113. https://doi.org/10.1080/13880209.2017.1288749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kanchanapoom T, Kasai R, Picheansoonthon C, Yamasaki K (2001) Megastigmane, aliphatic alcohol and benzoxazinoid glycosides from Acanthus ebracteatus. Phytochemistry 58:811–817. https://doi.org/10.1016/S0031-9422(01)00306-5

    Article  CAS  PubMed  Google Scholar 

  16. Tuntiwachwuttikul P, Pancharoen O, Taylor WC (1998) Iridoid glucosides of Barleria lupulina. Phytochemistry 49:163–166. https://doi.org/10.1016/S0031-9422(97)01049-2

    Article  CAS  Google Scholar 

  17. Kim KH, Clardy J, Senger D, Cao S (2015) Chakyunglupulins A and B, two novel 4,8,8-trimethylcyclooct-2-enone derivatives from Barleria lupulina. Tetrahedron Lett 56:2732–2734. https://doi.org/10.1016/j.tetlet.2015.04.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhou K, Wu J, Chen J et al (2019) Schaftoside ameliorates oxygen glucose deprivation-induced inflammation associated with the TLR4/Myd88/Drp1-related mitochondrial fission in BV2 microglia cells. J Pharmacol Sci 139:15–22. https://doi.org/10.1016/j.jphs.2018.10.012

    Article  CAS  PubMed  Google Scholar 

  19. Kim KH, Park YJ, Chung KH et al (2015) Iridoid glycosides from Barleria lupulina. J Nat Prod 78:320–324. https://doi.org/10.1021/np500791a

    Article  CAS  PubMed  Google Scholar 

  20. Speranza L, Franceschelli S, Pesce M et al (2010) Antiinflammatory effects in THP-1 cells treated with verbascoside. Phyther Res 24:1398–1404. https://doi.org/10.1002/ptr.3173

    Article  CAS  Google Scholar 

  21. Carrillo-Ocampo D, Bazaldúa-Gómez S, Bonilla-Barbosa JR et al (2013) Anti-inflammatory activity of iridoids and verbascoside isolated from Castilleja tenuiflora. Molecules 18:12109–12118. https://doi.org/10.3390/molecules181012109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hausmann M, Obermeier F, Paper DH et al (2007) In vivo treatment with the herbal phenylethanoid acteoside ameliorates intestinal inflammation in dextran sulphate sodium-induced colitis. Clin Exp Immunol 148:373–381. https://doi.org/10.1111/j.1365-2249.2007.03350.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Huang D, Guo W, Gao J et al (2015) Clinacanthus nutans (Burm. f.) Lindau ethanol extract inhibits hepatoma in mice through upregulation of the immune response. Molecules 20:17405–17428. https://doi.org/10.3390/molecules200917405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chelyn JL, Omar MH, Mohd Yousof NSA et al (2014) Analysis of flavone C -glycosides in the leaves of Clinacanthus nutans (Burm. f.) Lindau by HPTLC and HPLC-UV/DAD. Sci World J 2014:724267–724267. https://doi.org/10.1155/2014/724267

    Article  CAS  Google Scholar 

  25. Le CF, Kailaivasan TH, Chow SC et al (2017) Phytosterols isolated from Clinacanthus nutans induce immunosuppressive activity in murine cells. Int Immunopharmacol 44:203–210. https://doi.org/10.1016/j.intimp.2017.01.013

    Article  CAS  PubMed  Google Scholar 

  26. Mai CW, Yap KSI, Kho MT et al (2016) Mechanisms underlying the anti-inflammatory effects of Clinacanthus nutans lindau extracts: Inhibition of cytokine production and toll-like receptor-4 activation. Front Pharmacol 7:1–11. https://doi.org/10.3389/fphar.2016.00007

    Article  CAS  Google Scholar 

  27. Panyakom K (2006) Structural elucidation of bioactive compounds of Clinacanthus nutans (Burm.F.) Lindau leaves. M. Sc. Thesis, Suranaree University of Technology Nakhon Rathchasima, Thailand

  28. Teshima KI, Kaneko T, Ohtani K et al (1998) Sulfur-containing glucosides from Clinacanthus nutans. Phytochemistry 48:831–835. https://doi.org/10.1016/S0031-9422(97)00956-4

    Article  CAS  Google Scholar 

  29. Ono M, Yoshida A, Ito Y, Nohara T (1999) Phenethyl alcohol glycosides and isopentenol glycoside from fruit of Bupleurum falcatum. Phytochemistry 51:819–823. https://doi.org/10.1016/s0031-9422(99)00073-4

    Article  CAS  PubMed  Google Scholar 

  30. Miyase T, Koizumi A, Ueno A et al (1982) Studies on the acyl glycosides from Leucoseptrum japonicum (Miq.) Kitamura et Murata. Chem Pharm Bull 30:2732–2737. https://doi.org/10.1248/cpb.30.2732

    Article  CAS  Google Scholar 

  31. Kitagawa S, Tsukamoto H, Hisada S, Nishbe S (1984) Studies on the Chinese crude drug “forsythiae fructus”. VII. A new caffeoyl glycoside from forsythia viridissima. Chem Pharm Bull 32:1209–1213. https://doi.org/10.1248/cpb.32.1209

    Article  CAS  Google Scholar 

  32. Achenbach H, Lowel M, Waibel R et al (1992) New lignan glucosides from Stemmadenia minima. Planta Med 58:270–272. https://doi.org/10.1055/s-2006-961451

    Article  CAS  PubMed  Google Scholar 

  33. Sudo H, Ide T, Otsuka H et al (2000) Megastigmane, benzyl and phenethyl alcohol glycosides, and 4,4’- dimethoxy-β-truxinic acid catalpol diester from the leaves of Premna subscandens Merr. Chem Pharm Bull 48:542–546. https://doi.org/10.1248/cpb.48.542

    Article  CAS  Google Scholar 

  34. Yahuafai J, Siripong P, Limpanasithikul W (2010) Immunomodulatory effect of Acanthus ebracteatus Vahl. aqueous extract on macrophage function. Thai Cancer J 30:55–67

    Google Scholar 

  35. Ida Y, Satoh Y, Ohtsuka M et al (1993) Phenolic constituents of phellodendron amurense bark. Phytochemistry 35:209–215. https://doi.org/10.1016/S0031-9422(00)90536-3

    Article  Google Scholar 

  36. Hase T, Ohtani K, Kasai R et al (1995) Revised structure for hortensin, a flavonoid from Millingtonia hortensis. Phytochemistry 40:287–290. https://doi.org/10.1016/0031-9422(95)00206-M

    Article  CAS  Google Scholar 

  37. Okamura N, Yagi A, Nishioka I (1981) Studies on the constituents of zizyphi fructus. V. Structures of glycosides of benzyl alcohol, vomifoliol and naringenin. Chem Pharm Bull 29:3507–3514. https://doi.org/10.1248/cpb.29.3507

    Article  CAS  Google Scholar 

  38. Otsuka H, Yamasaki K, Hirai Y, Nagao T (1988) Anti-inflammatory activity of benzoxazinoids from roots of coix lachryma-jobi var. Ma-yuen. J Nat Prod 51:74–79. https://doi.org/10.1021/np50055a009

    Article  CAS  PubMed  Google Scholar 

  39. Senger DR, Hoang MV, Kim KH et al (2016) Anti-inflammatory activity of Barleria lupulina: identification of active compounds that activate the Nrf2 cell defense pathway, organize cortical actin, reduce stress fibers, and improve cell junctions in microvascular endothelial cells. J Ethnopharmacol 193:397–407. https://doi.org/10.1016/j.jep.2016.09.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chong ZX, Alshagga M, Saed KA, Kassim S (2017) Impact of khat (Catha edulis) chewing/use on heart rate and blood pressure: a critical review. Malays J Public Health Med 17:76–85. https://doi.org/10.37268/mjphm/vol.17/no.3/art.227

    Article  Google Scholar 

  41. Noor AA, Aljunid SM, Aizuddin AN (2017) Systematic review of factors associated with willingness to pay for health financing scheme. Malays J Public Health Med 17:103–112

    Google Scholar 

  42. Pongphasuk N, Khunkitti W, Chitcharoenthum M (2005) Anti-inflammatory and analgesic activities of the extract from garcinia mangostana linn. Acta Hortic 680:125–130. https://doi.org/10.17660/ActaHortic.2005.680.18

    Article  Google Scholar 

  43. Tu SF, Liu RH, Bin CY et al (2014) Chemical constituents and bioactivities of Clinacanthus nutans aerial parts. Molecules 19:20382–20390. https://doi.org/10.3390/molecules191220382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Thongrakard V, Tencomnao T (2010) Modulatory effects of Thai medicinal plant extract on proinflammatory cytokines-induced apoptosis in human keratinocyte HaCat cells. Afr J Biotechnol 9:4999–5003. https://doi.org/10.5897/AJB10.453

    Article  Google Scholar 

  45. Thamaree S, Rugrungtham K, Ruangrungsi N et al (2001) The inhibitory effects of andrographolide and extracts of some herbal medicines on the production of proinflammatory cytokines by LPS-stimulated human blood cells. Chulalongkorn Med J 45:84

    Google Scholar 

  46. Tuntiwachwuttikul P, Pootaeng-On Y, Phansa P, Taylor WC (2004) Cerebrosides and a monoacylmonogalactosylglycerol from Clinacanthus nutans. Chem Pharm Bull 52:27–32. https://doi.org/10.1248/cpb.52.27

    Article  CAS  Google Scholar 

  47. Suba Y, Murugesan T, Kumaravelrajan R et al (2005) Antiinflammatory, analgesic and antiperoxidative efficacy of Barleria lupulina Lindl. extract. Phyther Res 19:695–699. https://doi.org/10.1002/ptr.1734

    Article  CAS  Google Scholar 

  48. Mazumder PM, Mondal A, Sasmal D et al (2012) Evaluation of antiarthritic and immunomodulatory activity of Barleria Lupulina. Asian Pac J Trop Biomed 2:1400–1406. https://doi.org/10.1016/S2221-1691(12)60425-0

    Article  Google Scholar 

  49. Laupattarakasem P, Houghton PJ, Hoult JRS, Itharat A (2003) An evaluation of the activity related to inflammation of four plants used in Thailand to treat arthritis. J Ethnopharmacol 85:207–215. https://doi.org/10.1016/S0378-8741(02)00367-7

    Article  CAS  PubMed  Google Scholar 

  50. Jhunjhunwala S, Aresta-DaSilva S, Tang K et al (2015) Neutrophil responses to sterile implant materials. PLoS ONE. https://doi.org/10.1371/journal.pone.0137550

    Article  PubMed  PubMed Central  Google Scholar 

  51. Sabroe I, Dower SK, Whyte MKB (2005) The role of toll-like receptors in the regulation of neutrophil migration, activation, and apoptosis. Clin Infect Dis 41:S421–S426. https://doi.org/10.1086/431992

    Article  CAS  PubMed  Google Scholar 

  52. Morzadec C, Macoch M, Sparfel L et al (2014) Nrf2 expression and activity in human T lymphocytes: Stimulation by T cell receptor activation and priming by inorganic arsenic and tert-butylhydroquinone. Free Radic Biol Med 71:133–145. https://doi.org/10.1016/j.freeradbiomed.2014.03.006

    Article  CAS  PubMed  Google Scholar 

  53. Ahmed SMU, Luo L, Namani A et al (2017) Nrf2 signaling pathway: pivotal roles in inflammation. Biochim Biophys Acta - Mol Basis Dis 1863:585–597. https://doi.org/10.1016/j.bbadis.2016.11.005

    Article  CAS  PubMed  Google Scholar 

  54. Di Rosa M, Giroud JP, Willoughby DA (1971) Studies of the mediators of the acute inflammatory response induced in rats in different sites by carrageenan and turpentine. J Pathol 104:15–29. https://doi.org/10.1002/path.1711040103

    Article  PubMed  Google Scholar 

  55. Raduan SZB, Wahab RBA, Kassim DHBA et al (2018) Preliminary phytochemical screening of the potential medicinal plants of the melanau in Pulau Bruit, Sarawak, Malaysia. Malays Appl Biol 47:195–202

    Google Scholar 

  56. Van Der Veen BS, De Winther MPJ, Heeringa P (2009) Myeloperoxidase: molecular mechanisms of action and their relevance to human health and disease. Antioxid Redox Signal 11:2899–2937. https://doi.org/10.1089/ars.2009.2538

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The current work was supported by the Fundamental Research Grant Scheme (FRGS), Ministry of Education Malaysia (MOE), Grant Number FRGS/1/2018/SKK08/UNIM/02/2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chee-Mun Fang.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Research involving human and animal participants

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ilori, N.T.O., Liew, C.XQ. & Fang, CM. The anti-inflammatory properties of Acanthus Ebracteatus, Barleria Lupulina and Clinacanthus Nutans: a systematic review. Mol Biol Rep 47, 9883–9894 (2020). https://doi.org/10.1007/s11033-020-06025-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-06025-x

Keywords

Navigation