Skip to main content

Technological Developments in lncRNA Biology

  • Chapter
  • First Online:
Long Non Coding RNA Biology

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1008))

Abstract

It is estimated that more than 90% of the mammalian genome is transcribed as non-coding RNAs. Recent evidences have established that these non-coding transcripts are not junk or just transcriptional noise, but they do serve important biological purpose. One of the rapidly expanding fields of this class of transcripts is the regulatory lncRNAs, which had been a major challenge in terms of their molecular functions and mechanisms of action. The emergence of high-throughput technologies and the development in various conventional approaches have led to the expansion of the lncRNA world. The combination of multidisciplinary approaches has proven to be essential to unravel the complexity of their regulatory networks and helped establish the importance of their existence. Here, we review the current methodologies available for discovering and investigating functions of long non-coding RNAs (lncRNAs) and focus on the powerful technological advancement available to specifically address their functional importance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Waldron C, Lacroute F (1975) Effect of growth rate on the amounts of ribosomal and transfer ribonucleic acids in yeast. J Bacteriol 122:855–865

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Comings DE (1972) The structure and function of chromatin. Adv Hum Genet 3:237–431

    Article  CAS  PubMed  Google Scholar 

  3. Fatica A, Bozzoni I (2014) Long non-coding RNAs: new players in cell differentiation and development. Nat Rev Genet 15:7–21

    Article  CAS  PubMed  Google Scholar 

  4. Cech TR, Steitz JA (2016) The non-coding RNA revolution-trashing old rules to forge new ones. Cell 157:77–94. doi:10.1016/j.cell.2014.03.008

    Article  CAS  Google Scholar 

  5. Quinn JJ, Chang HY (2016) Unique features of long non-coding RNA biogenesis and function. Nat Rev Genet 17:47–62. doi:10.1038/nrg.2015.10

    Article  CAS  PubMed  Google Scholar 

  6. Carninci P, Kasukawa T, Katayama S et al (2005) The transcriptional landscape of the mammalian genome. Science 309:1559–1563. doi:10.1126/science.1112014

    Article  CAS  PubMed  Google Scholar 

  7. Djebali S, Davis CA, Merkel A et al (2012) Landscape of transcription in human cells. Nature 489:101–108. doi:10.1038/nature11233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Guttman M, Amit I, Garber M et al (2009) Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 458:223–227. doi:10.1038/nature07672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. De Santa F, Barozzi I, Mietton F et al (2010) A large fraction of extragenic RNA pol II transcription sites overlap enhancers. PLoS Biol 8:e1000384. doi:10.1371/journal.pbio.1000384

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Tsoi LC, Iyer MK, Stuart PE et al (2015) Analysis of long non-coding RNAs highlights tissue-specific expression patterns and epigenetic profiles in normal and psoriatic skin. Genome Biol 16:24. doi:10.1186/s13059-014-0570-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Grote P, Wittler L, Hendrix D et al (2013) The tissue-specific lncRNA Fendrr is an essential regulator of heart and body wall development in the mouse. Dev Cell 24:206–214. doi:10.1016/j.devcel.2012.12.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gibb EA, Vucic EA, Enfield KSS et al (2011) Human cancer long non-coding RNA transcriptomes. PLoS One 6:1–10. doi:10.1371/journal.pone.0025915

    Article  CAS  Google Scholar 

  13. Derrien T, Johnson R, Bussotti G et al (2012) The GENCODE v7 catalog of human long non-coding RNAs: analysis of their gene structure, evolution, and expression. Genome Res 22:1775–1789. doi:10.1101/gr.132159.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wan Y, Kertesz M, Spitale RC et al (2011) Understanding the transcriptome through RNA structure. Nat Rev Genet 12:641–655. doi:10.1038/nrg3049

    Article  CAS  PubMed  Google Scholar 

  15. Underwood JG, Uzilov A V, Katzman S et al (2010) FragSeq: transcriptome-wide RNA structure probing using high-throughput sequencing. Nat Methods 7(12):995–1001. doi:10.1038/NMETH.1529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rouskin S, Zubradt M, Washietl S et al (2014) Genome-wide probing of RNA structure reveals active unfolding of mRNA structures in vivo. Nature 505:701–705. doi:10.1038/nature12894

    Article  CAS  PubMed  Google Scholar 

  17. Mauger DM, Weeks KM (2010) Toward global RNA structure analysis. Nat Publ Gr 28:1178–1179. doi:10.1038/nbt1110-1178

    CAS  Google Scholar 

  18. Flynn RA, Zhang QC, Spitale RC et al (2016) Transcriptome-wide interrogation of RNA secondary structure in living cells with icSHAPE. Nat Protoc 11:273–290. doi:10.1038/nprot.2016.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Li L, Chang HY (2014) Physiological roles of long non-coding RNAs: insight from knockout mice. Trends Cell Biol 24:594–602. doi:10.1016/j.tcb.2014.06.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tsai M-C, Manor O, Wan Y et al (2010) Long non-coding RNA as modular scaffold of histone modification complexes. Science 329:689–693. doi:10.1126/science.1192002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tripathi V, Ellis JD, Shen Z et al (2010) The nuclear-retained non-coding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol Cell 39:925–938. doi:10.1016/j.molcel.2010.08.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kapranov P, St Laurent G, Raz T et al (2010) The majority of total nuclear-encoded non-ribosomal RNA in a human cell is “dark matter” un-annotated RNA. BMC Biol 8:149. doi:10.1186/1741-7007-8-149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fort A, Hashimoto K, Yamada D et al (2014) Deep transcriptome profiling of mammalian stem cells supports a regulatory role for retrotransposons in pluripotency maintenance. Nat Genet 46:558–566. doi:10.1038/ng.2965

    Article  CAS  PubMed  Google Scholar 

  24. Carrieri C, Cimatti L, Biagioli M et al (2012) Long non-coding antisense RNA controls Uchl1 translation through an embedded SINEB2 repeat. Nature 491:454–457. doi:10.1038/nature11508

    Article  CAS  PubMed  Google Scholar 

  25. Ling H, Vincent K, Pichler M et al (2015) Junk DNA and the long non-coding RNA twist in cancer genetics. Oncogene 34:5003–5011. doi:10.1038/onc.2014.456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kung JTY, Colognori D, Lee JT (2013) Long non-coding RNAs: past, present, and future. Genetics 193:651–669. doi:10.1534/genetics.112.146704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rinn JL, Chang HY (2012) Genome regulation by long non-coding RNAs. Annu Rev Biochem 81:145–166. doi:10.1146/annurev-biochem-051410-092902

    Article  CAS  PubMed  Google Scholar 

  28. Okazaki Y, Furuno M, Kasukawa T et al (2002) Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs. Nature 420:563–573. doi:10.1038/nature01266

    Article  PubMed  Google Scholar 

  29. Velculescu VE, Zhang L, Vogelstein B, Kinzler KW (1995) Serial analysis of gene expression. Science 270:484–487

    Article  CAS  PubMed  Google Scholar 

  30. Cheng J, Kapranov P, Drenkow J et al (2005) Transcriptional maps of 10 human chromosomes at 5-nucleotide resolution. Science 308:1149–1154. doi:10.1126/science.1108625

    Article  CAS  PubMed  Google Scholar 

  31. Katayama S, Tomaru Y, Kasukawa T et al (2005) Antisense transcription in the mammalian transcriptome. Science 309:1564–1566. doi:10.1126/science.1112009

    Article  PubMed  Google Scholar 

  32. Rinn JL, Kertesz M, Wang JK et al (2007) Functional demarcation of active and silent chromatin domains in human HOX loci by non-coding RNAs. Cell 129:1311–1323. doi:10.1016/j.cell.2007.05.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25:1105–1111. doi:10.1093/bioinformatics/btp120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sultan M, Schulz MH, Richard H et al (2008) A global view of gene activity and alternative splicing by deep sequencing of the human transcriptome. Science 321:956–960. doi:10.1126/science.1160342

    Article  CAS  PubMed  Google Scholar 

  35. Quinn EM, Cormican P, Kenny EM et al (2013) Development of strategies for SNP detection in RNA-seq data: application to lymphoblastoid cell lines and evaluation using 1000 genomes data. PLoS One 8:e58815. doi:10.1371/journal.pone.0058815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Edgren H, Murumagi A, Kangaspeska S et al (2011) Identification of fusion genes in breast cancer by paired-end RNA-sequencing. Genome Biol 12:R6. doi:10.1186/gb-2011-12-1-r6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Guttman M, Garber M, Levin JZ et al (2010) Ab initio reconstruction of cell type-specific transcriptomes in mouse reveals the conserved multi-exonic structure of lincRNAs. Nat Biotechnol 28:503–510. doi:10.1038/nbt.1633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cabili MN, Trapnell C, Goff L et al (2011) Integrative annotation of human large intergenic non-coding RNAs reveals global properties and specific subclasses. Genes Dev 25:1915–1927. doi:10.1101/gad.17446611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mercer TR, Gerhardt DJ, Dinger ME et al (2011) Targeted RNA sequencing reveals the deep complexity of the human transcriptome. Nat Biotechnol 30:99–104. doi:10.1038/nbt.2024

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Bussotti G, Leonardi T, Clark MB et al (2016) Improved definition of the mouse transcriptome via targeted RNA sequencing. Genome Res 26:705–716. doi:10.1101/gr.199760.115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Iyer MK, Niknafs YS, Malik R et al (2015) The landscape of long non-coding RNAs in the human transcriptome. Nat Genet 47:199–208. doi:10.1038/ng.3192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhang Y, Wong C-H, Birnbaum RY et al (2013) Chromatin connectivity maps reveal dynamic promoter-enhancer long-range associations. Nature 504:306–310. doi:10.1038/nature12716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Shiraki T, Kondo S, Katayama S et al (2003) Cap analysis gene expression for high-throughput analysis of transcriptional starting point and identification of promoter usage. Proc Natl Acad Sci U S A 100:15776–15781. doi:10.1073/pnas.2136655100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lasda E, Parker R (2014) Circular RNAs: diversity of form and function. RNA 20:1829–1842. doi:10.1261/rna.047126.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Plessy C, Bertin N, Takahashi H et al (2010) Linking promoters to functional transcripts in small samples with nanoCAGE and CAGEscan. Nat Methods 7:528–534. doi:10.1038/nmeth.1470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Guttman M, Rinn JL (2012) Modular regulatory principles of large non-coding RNAs. Nature 482:339–346. doi:10.1038/nature10887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yang L, Duff MO, Graveley BR et al (2011) Genomewide characterization of non-polyadenylated RNAs. Genome Biol 12:R16. doi:10.1186/gb-2011-12-2-r16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kim JK, Kolodziejczyk AA, Ilicic T et al (2015) Characterizing noise structure in single-cell RNA-seq distinguishes genuine from technical stochastic allelic expression. Nat Commun 6:8687. doi:10.1038/ncomms9687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Finn RD, Mistry J, Tate J et al (2010) The Pfam protein families database. Nucleic Acids Res 38:D211–D222. doi:10.1093/nar/gkp985

    Article  CAS  PubMed  Google Scholar 

  50. Ohnishi Y, Huber W, Tsumura A et al (2014) Cell-to-cell expression variability followed by signal reinforcement progressively segregates early mouse lineages. Nat Cell Biol 16:27–37. doi:10.1038/ncb2881

    Article  CAS  PubMed  Google Scholar 

  51. Liu SJ, Nowakowski TJ, Pollen AA et al (2016) Single-cell analysis of long non-coding RNAs in the developing human neocortex. Genome Biol 17:67. doi:10.1186/s13059-016-0932-1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Saliba A-E, Westermann AJ, Gorski SA, Vogel J (2014) Single-cell RNA-seq: advances and future challenges. Nucleic Acids Res 42:8845–8860. doi:10.1093/nar/gku555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Mattick JS (2009) The genetic signatures of non-coding RNAs. PLoS Genet 5:e1000459. doi:10.1371/journal.pgen.1000459

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Tripathi V, Shen Z, Chakraborty A et al (2013) Long non-coding RNA MALAT1 controls cell cycle progression by regulating the expression of oncogenic transcription factor B-MYB. PLoS Genet 9(3):e1003368. doi:10.1371/journal.pgen.1003368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Chen L-L, Carmichael GG (2009) Altered nuclear retention of mRNAs containing inverted repeats in human embryonic stem cells: functional role of a nuclear non-coding RNA. Mol Cell 35:467–478. doi:10.1016/j.molcel.2009.06.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hutchinson JN, Ensminger AW, Clemson CM et al (2007) A screen for nuclear transcripts identifies two linked non-coding RNAs associated with SC35 splicing domains. BMC Genomics 8:39. doi:10.1186/1471-2164-8-39

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Femino AM, Fay FS, Fogarty K, Singer RH (1998) Visualization of single RNA transcripts in-situ. Science 280:585–590

    Article  CAS  PubMed  Google Scholar 

  58. Fan Y, Braut SA, Lin Q et al (2001) Determination of transgenic loci by expression FISH. Genomics 71:66–69. doi:10.1006/geno.2000.6403

    Article  CAS  PubMed  Google Scholar 

  59. Dirks RW, Raap AK (1995) Cell-cycle-dependent gene expression studied by two-colour fluorescent detection of a mRNA and histone mRNA. Histochem Cell Biol 104:391–395

    Article  CAS  PubMed  Google Scholar 

  60. Clemson CM, McNeil JA, Willard HF, Lawrence JB (1996) XIST RNA paints the inactive X chromosome at interphase: evidence for a novel RNA involved in nuclear/chromosome structure. J Cell Biol 132:259–275

    Article  CAS  PubMed  Google Scholar 

  61. Bridger JM, Kalla C, Wodrich H et al (2005) Nuclear RNAs confined to a reticular compartment between chromosome territories. Exp Cell Res 302:180–193. doi:10.1016/j.yexcr.2004.07.038

    Article  CAS  PubMed  Google Scholar 

  62. Clemson CM, Hutchinson JN, Sara SA et al (2009) An architectural role for a nuclear non-coding RNA: NEAT1 RNA is essential for the structure of paraspeckles. Mol Cell 33:717–726. doi:10.1016/j.molcel.2009.01.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Redrup L, Branco MR, Perdeaux ER et al (2009) The long non-coding RNA Kcnq1ot1 organises a lineage-specific nuclear domain for epigenetic gene silencing. Development 136:525–530. doi:10.1242/dev.031328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Raj A, van den Bogaard P, Rifkin SA et al (2008) Imaging individual mRNA molecules using multiple singly labeled probes. Nat Methods 5:877–879. doi:10.1038/nmeth.1253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Raj A, Tyagi S (2010) Detection of individual endogenous RNA transcripts in-situ using multiple singly labeled probes. Methods Enzymol 472:365–386. doi:10.1016/S0076-6879(10)72004-8

    Article  CAS  PubMed  Google Scholar 

  66. Raj A, Rifkin SA, Andersen E, van Oudenaarden A (2010) Variability in gene expression underlies incomplete penetrance. Nature 463:913–918. doi:10.1038/nature08781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Sahu NK, Shilakari G, Nayak A, Kohli D V (2007) Antisense technology: a selective tool for gene expression regulation and gene targeting. Curr Pharm Biotechnol 8:291–304

    Article  CAS  PubMed  Google Scholar 

  68. Guttman M, Donaghey J, Carey BW et al (2011) lincRNAs act in the circuitry controlling pluripotency and differentiation. Nature 477:295–300. doi:10.1038/nature10398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Sarma K, Levasseur P, Aristarkhov A, Lee JT (2010) Locked nucleic acids (LNAs) reveal sequence requirements and kinetics of Xist RNA localization to the X chromosome. Proc Natl Acad Sci U S A 107:22196–22201. doi:10.1073/pnas.1009785107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Orom UA, Derrien T, Guigo R, Shiekhattar R (2010) Long non-coding RNAs as enhancers of gene expression. Cold Spring Harb Symp Quant Biol 75:325–331. doi:10.1101/sqb.2010.75.058

    Article  CAS  PubMed  Google Scholar 

  71. Zalatan JG, Lee ME, Almeida R et al (2015) Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds. Cell 160:339–350. doi:10.1016/j.cell.2014.11.052

    Article  CAS  PubMed  Google Scholar 

  72. Qi LS, Larson MH, Gilbert LA et al (2013) Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152:1173–1183. doi:10.1016/j.cell.2013.02.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Gilbert LA, Larson MH, Morsut L et al (2013) CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154:442–451. doi:10.1016/j.cell.2013.06.044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Gilbert LA, Horlbeck MA, Adamson B et al (2014) Genome-scale CRISPR-mediated control of gene repression and activation. Cell 159:647–661. doi:10.1016/j.cell.2014.09.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Nakagawa S, Ip JY, Shioi G et al (2012) Malat1 is not an essential component of nuclear speckles in mice. RNA 18:1487–1499. doi:10.1261/rna.033217.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Eissmann M, Gutschner T, Hammerle M et al (2012) Loss of the abundant nuclear non-coding RNA MALAT1 is compatible with life and development. RNA Biol 9:1076–1087. doi:10.4161/rna.21089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Schorderet P, Duboule D (2011) Structural and functional differences in the long non-coding RNA hotair in mouse and human. PLoS Genet 7:e1002071. doi:10.1371/journal.pgen.1002071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Sauvageau M, Goff LA, Lodato S et al (2013) Multiple knockout mouse models reveal lincRNAs are required for life and brain development. Elife 2:e01749. doi:10.7554/eLife.01749

    Article  PubMed  PubMed Central  Google Scholar 

  79. McFadden EJ, Hargrove AE (2016) Biochemical methods to investigate lncRNA and the influence of lncRNA:protein complexes on chromatin. Biochemistry 55:1615–1630. doi:10.1021/acs.biochem.5b01141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Lai F, Blumenthal E, Shiekhattar R (2016) Detection and analysis of long non-coding RNAs. Methods Enzymol 573:421–444. doi:10.1016/bs.mie.2016.03.010

    Article  CAS  PubMed  Google Scholar 

  81. Kashi K, Henderson L, Bonetti A, Carninci P (2016) Discovery and functional analysis of lncRNAs: methodologies to investigate an uncharacterized transcriptome. Biochim Biophys Acta 1859:3–15. doi:10.1016/j.bbagrm.2015.10.010

    Article  CAS  PubMed  Google Scholar 

  82. Ferre F, Colantoni A, Helmer-Citterich M (2016) Revealing protein-lncRNA interaction. Brief Bioinform 17:106–116. doi:10.1093/bib/bbv031

    Article  PubMed  Google Scholar 

  83. Chu C, Spitale RC, Chang HY (2015) Technologies to probe functions and mechanisms of long non-coding RNAs. Nat Struct Mol Biol 22:29–35. doi:10.1038/nsmb.2921

    Article  CAS  PubMed  Google Scholar 

  84. Eddy SR (2001) Non-coding RNA genes and the modern RNA world. Nat Rev Genet 2:919–929. doi:10.1038/35103511

    Article  CAS  PubMed  Google Scholar 

  85. Marin-Bejar O, Huarte M (2015) RNA pulldown protocol for in vitro detection and identification of RNA-associated proteins. Methods Mol Biol 1206:87–95. doi:10.1007/978-1-4939-1369-5_8

    Article  CAS  PubMed  Google Scholar 

  86. Bai Q, Bai Z, Sun L (2016) Detection of RNA-binding proteins by in vitro RNA pull-down in adipocyte culture. J Vis Exp. doi:10.3791/54207

  87. Zhao J, Sun BK, Erwin JA et al (2008) Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Science 322:750–756. doi:10.1126/science.1163045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Chu C, Zhang QC, da Rocha ST et al (2015) Systematic discovery of Xist RNA binding proteins. Cell 161:404–416. doi:10.1016/j.cell.2015.03.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Hogg JR, Collins K (2007) RNA-based affinity purification reveals 7SK RNPs with distinct composition and regulation. RNA 13:868–880. doi:10.1261/rna.565207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Yoon J-H, Srikantan S, Gorospe M (2012) MS2-TRAP (MS2-tagged RNA affinity purification): tagging RNA to identify associated miRNAs. Methods 58:81–87. doi:10.1016/j.ymeth.2012.07.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Yoon J-H, Gorospe M (2016) Identification of mRNA-interacting factors by MS2-TRAP (MS2-tagged RNA affinity purification). Methods Mol Biol 1421:15–22. doi:10.1007/978-1-4939-3591-8_2

    Article  PubMed  PubMed Central  Google Scholar 

  92. Guil S, Soler M, Portela A et al (2012) Intronic RNAs mediate EZH2 regulation of epigenetic targets. Nat Struct Mol Biol 19:664–670. doi:10.1038/nsmb.2315

    Article  CAS  PubMed  Google Scholar 

  93. Xi L, Cech TR (2015) Protein-RNA interaction restricts telomerase from running through the stop sign. Nat Struct Mol Biol 22:835–836. doi:10.1038/nsmb.3118

    Article  CAS  PubMed  Google Scholar 

  94. Spitzer J, Hafner M, Landthaler M et al (2014) PAR-CLIP (photoactivatable ribonucleoside-enhanced crosslinking and immunoprecipitation): a step-by-step protocol to the transcriptome-wide identification of binding sites of RNA-binding proteins. Methods Enzymol 539:113–161. doi:10.1016/B978-0-12-420120-0.00008-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Yoon J-H, De S, Srikantan S et al (2014) PAR-CLIP analysis uncovers AUF1 impact on target RNA fate and genome integrity. Nat Commun 5:5248. doi:10.1038/ncomms6248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Kaneko S, Son J, Shen SS et al (2013) PRC2 binds active promoters and contacts nascent RNAs in embryonic stem cells. Nat Struct Mol Biol 20:1258–1264. doi:10.1038/nsmb.2700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Konig J, Zarnack K, Rot G et al (2011) iCLIP—transcriptome-wide mapping of protein-RNA interactions with individual nucleotide resolution. J Vis Exp. doi:10.3791/2638

  98. Wang Z, Kayikci M, Briese M et al (2010) iCLIP predicts the dual splicing effects of TIA-RNA interactions. PLoS Biol 8:e1000530. doi:10.1371/journal.pbio.1000530

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Schmitz K-M, Mayer C, Postepska A, Grummt I (2010) Interaction of non-coding RNA with the rDNA promoter mediates recruitment of DNMT3b and silencing of rRNA genes. Genes Dev 24:2264–2269. doi:10.1101/gad.590910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Martianov I, Ramadass A, Serra Barros A et al (2007) Repression of the human dihydrofolate reductase gene by a non-coding interfering transcript. Nature 445:666–670. doi:10.1038/nature05519

    Article  CAS  PubMed  Google Scholar 

  101. Jeon Y, Lee JT (2011) YY1 tethers Xist RNA to the inactive X nucleation center. Cell 146:119–133. doi:10.1016/j.cell.2011.06.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Chu C, Qu K, Zhong FL et al (2011) Genomic maps of long non-coding RNA occupancy reveal principles of RNA-chromatin interactions. Mol Cell 44:667–678. doi:10.1016/j.molcel.2011.08.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Quinn JJ, Ilik IA, Qu K et al (2014) Revealing long non-coding RNA architecture and functions using domain-specific chromatin isolation by RNA purification. Nat Biotechnol 32:933–940. doi:10.1038/nbt.2943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Engreitz JM, Pandya-Jones A, McDonel P et al (2013) The Xist lncRNA exploits three-dimensional genome architecture to spread across the X chromosome. Science 341:1237973. doi:10.1126/science.1237973

  105. Engreitz JM, Sirokman K, Mcdonel P et al (2014) Resource RNA-RNA interactions enable specific targeting of non-coding RNAs to nascent pre-mRNAs and chromatin sites. Cell 159:188–199. doi:10.1016/j.cell.2014.08.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Mchugh CA, Chen C, Chow A et al (2015) The Xist lncRNA interacts directly with SHARP to silence transcription through HDAC3. Nature 521:232–236. doi:10.1038/nature14443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Lieberman-Aiden E, van Berkum NL, Williams L et al (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326:289–293. doi:10.1126/science.1181369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Dixon JR, Selvaraj S, Yue F et al (2012) Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485:376–380. doi:10.1038/nature11082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Simon MD, Wang CI, Kharchenko PV et al (2011) The genomic binding sites of a non-coding RNA. Proc Natl Acad Sci U S A 108(51):20497–20502. doi:10.1073/pnas.1113536108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Davis CP, West JA (2015) Purification of specific chromatin regions using oligonucleotides: capture hybridization analysis of RNA targets (CHART). Methods Mol Biol 1262:167–182. doi:10.1007/978-1-4939-2253-6_10

    Article  CAS  PubMed  Google Scholar 

  111. Simon MD, Pinter SF, Fang R et al (2013) Spreading during X-chromosome inactivation. Nature 504:465–469. doi:10.1038/nature12719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. West JA, Davis CP, Sunwoo H et al (2014) Resource the long non-coding RNAs NEAT1 and MALAT1 bind active chromatin sites. Mol Cell 55:791–802. doi:10.1016/j.molcel.2014.07.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Tollervey JR, Curk T, Rogelj B et al (2011) Characterizing the RNA targets and position-dependent splicing regulation by TDP-43. Nat Neurosci 14:452–458. doi:10.1038/nn.2778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Wang G, Chen H-W, Oktay Y et al (2010) PNPASE regulates RNA import into mitochondria. Cell 142:456–467. doi:10.1016/j.cell.2010.06.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Helwak A, Tollervey D (2014) Mapping the miRNA interactome by cross-linking ligation and sequencing of hybrids (CLASH). 9:711–728. doi: 10.1038/nprot.2014.043

  116. Kudla G, Granneman S, Hahn D et al (2011) Cross-linking, ligation, and sequencing of hybrids reveals RNA-RNA interactions in yeast. Proc Natl Acad Sci U S A 108:10010–10015. doi:10.1073/pnas.1017386108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Helwak A, Kudla G, Dudnakova T, Tollervey D (2013) Mapping the human miRNA interactome by CLASH reveals frequent noncanonical binding. Cell 153:654–665. doi:10.1016/j.cell.2013.03.043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Ingolia NT, Lareau LF, Weissman JS (2011) Ribosome profiling of mouse embryonic stem cells reveals the complexity and dynamics of mammalian proteomes. Cell 147:789–802. doi:10.1016/j.cell.2011.10.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Ingolia NT, Ghaemmaghami S, Newman JRS, Weissman JS (2009) Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 324:218–223. doi:10.1126/science.1168978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Ruiz-Orera J, Messeguer X, Subirana JA, Alba MM (2014) Long non-coding RNAs as a source of new peptides. Elife 3:e03523. doi:10.7554/eLife.03523

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Bazzini AA, Johnstone TG, Christiano R et al (2014) Identification of small ORFs in vertebrates using ribosome footprinting and evolutionary conservation. EMBO J 33:981–993. doi:10.1002/embj.201488411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Guttman M, Russell P, Ingolia NT et al (2013) Ribosome profiling provides evidence that large non-coding RNAs do not encode proteins. Cell 154:240–251. doi:10.1016/j.cell.2013.06.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Anderson DM, Anderson KM, Chang C-L et al (2015) A micropeptide encoded by a putative long non-coding RNA regulates muscle performance. Cell 160:595–606. doi:10.1016/j.cell.2015.01.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Heiman M, Kulicke R, Fenster RJ et al (2014) Cell type—specific mRNA purification by translating ribosome affinity purification (TRAP). Nat Protoc 9:1282–1291. doi:10.1038/nprot.2014.085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Hupe M, Li MX, Gertow Gillner K et al (2014) Evaluation of TRAP-sequencing technology with a versatile conditional mouse model. Nucleic Acids Res 42:e14. doi:10.1093/nar/gkt995

    Article  CAS  PubMed  Google Scholar 

  126. Maenner S, Blaud M, Fouillen L et al (2010) 2-D structure of the A region of Xist RNA and its implication for PRC2 association. PLoS Biol 8:e1000276. doi:10.1371/journal.pbio.1000276

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Novikova IV, Dharap A, Hennelly SP, Sanbonmatsu KY (2013) 3S: shotgun secondary structure determination of long non-coding RNAs. Methods 63:170–177. doi:10.1016/j.ymeth.2013.07.030

    Article  CAS  PubMed  Google Scholar 

  128. Kertesz M, Wan Y, Mazor E et al (2010) Genome-wide measurement of RNA secondary structure in yeast. Nature 467:103–107. doi:10.1038/nature09322

    Article  CAS  PubMed  Google Scholar 

  129. Wilkinson KA, Merino EJ, Weeks KM (2006) Selective 2’-hydroxyl acylation analyzed by primer extension (SHAPE): quantitative RNA structure analysis at single nucleotide resolution. Nat Prot 1:1610–1616. doi:10.1038/nprot.2006.249

    Article  CAS  Google Scholar 

  130. Somarowthu S, Legiewicz M, Liu F et al (2015) HOTAIR forms an intricate and modular secondary structure. Mol Cell 58:353–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Du Z, Fei T, Verhaak RGW et al (2013) Integrative genomic analyses reveal clinically relevant long non-coding RNAs in human cancer. Nat Struct Mol Biol 20:908–913. doi:10.1038/nsmb.2591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Fritah S, Niclou SP, Azuaje F (2014) Databases for lncRNAs: a comparative evaluation of emerging tools. RNA 20:1655–1665. doi:10.1261/rna.044040.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Liu Y, Lu X (2012) Non-coding RNAs in DNA damage response. Am J Cancer Res 2:658–675

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Yoon J, Abdelmohsen K, Srikantan S et al (2012) LincRNA-p21 suppresses target mRNA translation. Mol Cell 47:648–655. doi:10.1016/j.molcel.2012.06.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Hung T, Wang Y, Lin MF et al (2011) Extensive and coordinated transcription of noncoding RNAs within cell-cycle promoters. Nat Genetics 43(7):621–9. doi:10.1038/ng.848

  136. Schmitt AM, Garcia JT, Hung T et al (2016) An inducible long non-coding RNA amplifies DNA damage signaling. Nat Genet 48(11):1370–1376. doi:10.1038/ng.3673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Lukas J, Altmeyer M (2015) A lncRNA to repair DNA. EMBO Rep 16:1413–1414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Lee S, Kopp F, Chang T et al (2016) Non-coding RNA NORAD regulates genomic stability by sequestering PUMILIO proteins non-coding RNA NORAD regulates genomic stability by sequestering PUMILIO proteins. Cell 164:69–80. doi:10.1016/j.cell.2015.12.017

    Article  CAS  PubMed  Google Scholar 

  139. Wan G, Hu X, Liu Y et al (2013) A novel non-coding RNA lncRNA-JADE connects DNA damage signalling to histone H4 acetylation. EMBO J 32:2833–2847. doi:10.1038/emboj.2013.221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Wan G, Mathur R, Hu X et al (2013) Long non-coding RNA ANRIL ( CDKN2B-AS ) is induced by the ATM-E2F1 signaling pathway. Cell Signal 25:1086–1095. doi:10.1016/j.cellsig.2013.02.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Loewer S, Cabili MN, Guttman M et al (2010) Large intergenic non-coding RNA-RoR modulates reprogramming of human induced pluripotent stem cells. Nat Genet 42(12):1113–1117. doi:10.1038/ng.710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Ghosal S, Das S, Chakrabarti J (2013) Long non-coding RNAs: new players in the molecular mechanism for maintenance and differentiation of pluripotent stem cells. Stem Cells Dev 22:2240–2253. doi:10.1089/scd.2013.0014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Hung T, Chang HY (2010) Long noncoding RNA in genome regulation: prospects and mechanisms. RNA Biol 7:582–585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Eades G, Zhang Y, Li Q et al (2014) Long non-coding RNAs in stem cells and cancer. World J Clin Oncol 5:134–142. doi:10.5306/wjco.v5.i2.134

    Article  PubMed  PubMed Central  Google Scholar 

  145. Loewer S, Cabili MN, Guttman M et al (2010) Large intergenic non-coding RNA-RoR modulates reprogramming of human induced pluripotent stem cells. Nature Genetics 42(12):1113–7. doi:10.1038/ng.710

  146. Wang KC, Chang HY (2011) Molecular Mechanisms of Long Noncoding RNAs. Mol Cell 43(6):904–14. doi:10.1016/j.molcel.2011.08.018

  147. Grammatikakis I, Panda AC, Abdelmohsen K, Gorospe M (2014) Non-coding RNAs (lncRNAs ) and the molecular hallmarks of aging. Aging (Albany NY) 6:992–1009

    Article  Google Scholar 

  148. Zhao YAN, Guo Q, Chen J et al (2014) Role of long non-coding RNA HULC in cell proliferation, apoptosis and tumor metastasis of gastric cancer: a clinical and in vitro investigation. Oncol Rep 31:358–364. doi:10.3892/or.2013.2850

    CAS  PubMed  Google Scholar 

  149. Ying L, Huang Y, Chen H et al (2013) Downregulated MEG3 activates autophagy and increases cell proliferation in bladder cancer. Mol Biosyst 9:407–411. doi:10.1039/c2mb25386k

    Article  CAS  PubMed  Google Scholar 

  150. Liu X, Li D, Zhang W et al (2012) Long non-coding RNA gadd7 interacts with TDP-43 and regulates Cdk6 mRNA decay. EMBO J 31:4415–4427. doi:10.1038/emboj.2012.292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Huang J, Zhou N, Watabe K et al (2014) Long non-coding RNA UCA1 promotes breast tumor growth by suppression of p27 (Kip1). Cell Death Dis 27:1–10. doi:10.1038/cddis.2013.541

    Google Scholar 

  152. Rapicavoli NA, Qu K, Zhang J, Mikhail M (2013) A mammalian pseudogene lncRNA at the interface of inflammation and anti-inflammatory therapeutics. eLife 50:1–16. doi:10.7554/eLife.00762

    Google Scholar 

  153. Li Z, Chao T, Chang K et al (2013) The long non-coding RNA THRIL regulates TNF α expression through its interaction with hnRNPL. Proc Natl Acad Sci U S A 111:1002–1007. doi:10.1073/pnas.1313768111

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Atianand MK, Hu W, Satpathy AT et al (2016) A long non-coding RNA lincRNA-EPS acts as a transcriptional brake to restrain inflammation article a long non-coding RNA lincRNA-EPS acts as a transcriptional brake to restrain inflammation. Cell 165:1672–1685. doi:10.1016/j.cell.2016.05.075

  155. Samper E, Flores JM, Blasco MA (2001) Restoration of telomerase activity rescues chromosomal instability and premature aging in Terc–/– mice with short telomeres. EMBO Rep 2:800–807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Porro A, Feuerhahn S, Lingner J (2014) TERRA-reinforced association of LSD1 with MRE11 promotes processing of uncapped telomeres. Cell Rep 6:765–776. doi:10.1016/j.celrep.2014.01.022

    Article  CAS  PubMed  Google Scholar 

  157. Abdelmohsen K, Panda AC, Kang M et al (2014) 7SL RNA represses p53 translation by competing with HuR. Nucleic Acids Res 42:10099–10111. doi:10.1093/nar/gku686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Mourtada-Maarabouni M, Pickard MR, Hedge VL, Farzaneh F, Williams GT (2009) GAS5, a non-protein-coding RNA, controls apoptosis and is downregulated in breast cancer. Oncogene 28:195–208. doi:10.1038/onc.2008.373

    Article  CAS  PubMed  Google Scholar 

  159. Di Agostino S, Strano S, Emiliozzi V et al (2006) Gain of function of mutant p53: the mutant p53/NF-Y protein complex reveals an aberrant transcriptional mechanism of cell cycle regulation. Cancer Cell 10:191–202. doi:10.1016/j.ccr.2006.08.013

    Article  PubMed  CAS  Google Scholar 

  160. Yoon J, Abdelmohsen K, Kim J et al (2013) Scaffold function of long non-coding RNA HOTAIR in protein ubiquitination. Nat Commun 4:1–14. doi:10.1038/ncomms3939

    Article  CAS  Google Scholar 

  161. Johnsson P, Ackley A, Vidarsdottir L et al (2013) A pseudogene long-non-coding-RNA network regulates PTEN transcription and translation in human cells. Nat Struct Mol Biol 20:440–446. doi:10.1038/nsmb.2516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Bierhoff H, Dammert MA, Brocks D et al (2014) Short article. Quiescence-induced LncRNAs trigger H4K20 trimethylation and transcriptional silencing. Mol Cell 54:675–682. doi:10.1016/j.molcel.2014.03.032

    Article  CAS  PubMed  Google Scholar 

  163. Oakes C, Weichenhan D, Arab K et al (2013) Long non-coding RNA TARID directs demethylation and activation of the tumor suppressor TCF21 via GADD45A. Mol Cell 55:604–614. doi:10.1016/j.molcel.2014.06.031

    Google Scholar 

  164. Luo M, Jeong M, Li W et al (2015) Long non-coding RNAs control hematopoietic stem cell function. Cell Stem Cell 16:426–438. doi:10.1016/j.stem.2015.02.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Cesana M, Cacchiarelli D, Legnini I et al (2011) A long non-coding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell 147:358–369. doi:10.1016/j.cell.2011.09.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Klattenhoff CA, Scheuermann JC, Surface LE et al (2013) Braveheart, a long non-coding RNA required for cardiovascular lineage commitment. Cell 152:570–583. doi:10.1016/j.cell.2013.01.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Grote P, Herrmann BG (2015) Long non-coding RNAs in organogenesis: making the difference. Trends Genet 31:329–335. doi:10.1016/j.tig.2015.02.002

    Article  CAS  PubMed  Google Scholar 

  168. Zhu JG, Shen YH, Liu HL et al (2014) Long non-coding RNAs expression profile of the developing mouse heart. J Cell Biochem 115:910–918. doi:10.1002/jcb.24733

    Article  CAS  PubMed  Google Scholar 

  169. Ramos AD, Andersen RE, Kriegstein AR et al (2015) The long non-coding RNA Pnky regulates neuronal stem cells short article the long non-coding RNA Pnky regulates neuronal differentiation of embryonic and postnatal neural stem cells. Stem Cell 16:439–447. doi:10.1016/j.stem.2015.02.007

    CAS  Google Scholar 

  170. Richards EJ, Zhang G, Li Z et al (2015) Long non-coding RNAs (LncRNA) regulated by transforming growth factor (TGF). J Biol Chem 290:6857–6867. doi:10.1074/jbc.M114.610915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Xiao C, Wu C, Hu H (2016) LncRNA UCA1 promotes epithelial-mesenchymal transition (EMT) of breast cancer cells via enhancing Wnt/beta-catenin signaling pathway. Eur Rev Med Pharmacol Sci 7:2819–2824

    Google Scholar 

  172. Pickard MR, Williams GT (2013) Long non-coding RNA GAS5 regulates apoptosis in prostate cancer cell lines. Biochim Biophys Acta 1832:1613–1623. doi:10.1016/j.bbadis.2013.05.005

    Article  CAS  PubMed  Google Scholar 

  173. Khaitan D, Dinger ME, Mazar J et al (2011) The melanoma-upregulated long non-coding RNA SPRY4-IT1 modulates apoptosis and invasion. Cancer Res 15:3852–3862. doi:10.1158/0008-5472.CAN-10-4460

    Article  CAS  Google Scholar 

  174. Volders PJ, Helsens K, Wang X et al (2013) LNCipedia: a database for annotated human IncRNA transcript sequences and structures. Nucleic Acids Res 41:1–6. doi:10.1093/nar/gks915

    Article  CAS  Google Scholar 

  175. Volders PJ, Verheggen K, Menschaert G et al (2015) An update on LNCipedia: a database for annotated human lncRNA sequences. Nucleic Acids Res 43:D174–D180. doi:10.1093/nar/gku1060

    Article  CAS  PubMed  Google Scholar 

  176. Amaral PP, Clark MB, Gascoigne DK et al (2011) LncRNAdb: a reference database for long non-coding RNAs. Nucleic Acids Res 39:146–151. doi:10.1093/nar/gkq1138

    Article  CAS  Google Scholar 

  177. Quek XC, Thomson DW, Maag JLV et al (2015) lncRNAdb v2.0: expanding the reference database for functional long non-coding RNAs. Nucleic Acids Res 43:D168–D173. doi:10.1093/nar/gku988

    Article  CAS  PubMed  Google Scholar 

  178. Li JH, Liu S, Zhou H et al (2014) StarBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res 42:92–97. doi:10.1093/nar/gkt1248

    Article  CAS  Google Scholar 

  179. Yang JH, Li JH, Shao P et al (2011) StarBase: a database for exploring microRNA-mRNA interaction maps from Argonaute CLIP-Seq and Degradome-Seq data. Nucleic Acids Res 39:202–209. doi:10.1093/nar/gkq1056

    Article  CAS  Google Scholar 

  180. Jeggari A, Marks DS, Larsson E (2012) miRcode: a map of putative microRNA target sites in the long non-coding transcriptome. Bioinformatics 28:2062–2063. doi:10.1093/bioinformatics/bts344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Agarwal V, Bell GW, Nam JW, Bartel DP (2015) Predicting effective microRNA target sites in mammalian mRNAs. Elife 4:1–38. doi:10.7554/eLife.05005

    Article  Google Scholar 

  182. McLaren W, Gil L, Hunt SE et al (2016) The Ensembl variant effect predictor. Genome Biol 17:42374. doi:10.1101/042374

    Article  CAS  Google Scholar 

  183. Zerbino DR, Johnson N, Juetteman T et al (2016) Ensembl regulation resources. Database 2016:1–13. doi:10.1093/database/bav119

    Article  CAS  Google Scholar 

  184. Aken BL, Ayling S, Barrell D, et al (2016) The Ensembl gene annotation system. Database. 1–19. doi: 10.1093/database/baw093

  185. Yang Y-CT, Di C, Hu B et al (2015) CLIPdb: a CLIP-seq database for protein-RNA interactions. BMC Genomics 16:51. doi:10.1186/s12864-015-1273-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Hu B, Yang Y-CT, Huang Y et al (2016) POSTAR: a platform for exploring post-transcriptional regulation coordinated by RNA-binding proteinsgkw888. Nucleic Acids Res 45:D104–D114. doi:10.1093/nar/gkw888

    Article  PubMed  PubMed Central  Google Scholar 

  187. Erhard F, Dölken L, Jaskiewicz L, Zimmer R (2013) PARma: identification of microRNA target sites in AGO-PAR-CLIP data. Genome Biol 14:R79. doi:10.1186/gb-2013-14-7-r79

    Article  PubMed  PubMed Central  Google Scholar 

  188. Park C, Yu N, Choi I et al (2014) LncRNAtor: a comprehensive resource for functional investigation of long non-coding RNAs. Bioinformatics 30:2480–2485. doi:10.1093/bioinformatics/btu325

    Article  CAS  PubMed  Google Scholar 

  189. He S, Liu C, Skogerbø G et al (2008) NONCODE v2.0: decoding the non-coding. Nucleic Acids Res 36:2007–2009. doi:10.1093/nar/gkm1011

    Article  CAS  Google Scholar 

  190. Liu C, Bai B, Skogerbø G et al (2005) NONCODE: an integrated knowledge database of non-coding RNAs. Nucleic Acids Res 33:112–115. doi:10.1093/nar/gki041

    Article  CAS  Google Scholar 

  191. Das S, Ghosal S, Sen R, Chakrabarti J (2014) lnCeDB: database of human long non-coding RNA acting as competing endogenous RNA. PLoS One 9:e98965. doi:10.1371/journal.pone.0098965

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vidisha Tripathi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Jathar, S., Kumar, V., Srivastava, J., Tripathi, V. (2017). Technological Developments in lncRNA Biology. In: Rao, M. (eds) Long Non Coding RNA Biology. Advances in Experimental Medicine and Biology, vol 1008. Springer, Singapore. https://doi.org/10.1007/978-981-10-5203-3_10

Download citation

Publish with us

Policies and ethics