Skip to main content
Log in

Inhibition of suicidal erythrocyte death by pyrogallol

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Pyrogallol, a polyphenolic component of Acacia nilotica has previously been reported to induce apoptosis of diverse cell types. Pyrogallol is in part effective by influencing gene expression and by interference with mitochondrial function. Despite lack of nuclei and mitochondria, erythrocytes may undergo eryptosis, a suicidal death apparent from phosphatidylserine translocation to the erythrocyte surface and cell shrinkage. Eryptosis is triggered by glucose depletion, by oxidation, by hyperosmotic cell shrinkage and by excessive Ca2+ entry. As enhanced eryptosis is a common cause of anemia, uncovering inhibitors and stimulators of eryptosis may, both, be of clinical interest. Here we tested, whether eryptosis of human erythrocytes is modified by pyrogallol. Utilizing flow cytometry, phosphatidylserine abundance at the cell surface was estimated from annexin-V-binding and cell volume from forward scatter. Prior to determinations erythrocytes were incubated with or without glucose, without or with added oxidant tert-butyl-hydroperoxide (t-BOOH, 0.5 mM), without or with added hyperosmotic sucrose (550 mM) or without or with added Ca2+ ionophore ionomycin (1 µM). Treatment of erythrocytes with pyrogallol (2–8 µM) was without significant effect on annexin-V-binding and forward scatter. Glucose deprivation, t-BOOH, sucrose and ionomycin, each, triggered annexin-V-binding and decreased forward scatter. Pyrogallol significantly blunted the effects on annexin-V-binding but not on forward scatter. Pyrogallol thus blunts phosphatidylserine translocation in erythrocytes exposed to glucose depletion, oxidative stress, hyperosmotic shock and excessive Ca2+ entry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Revathi S, Hakkim FL, Kumar NR, Bakshi HA, Rashan L, Al-Buloshi M, Hasson S, Krishnan M, Javid F, Nagarajan K (2018) Induction of HT-29 colon cancer cells apoptosis by pyrogallol with growth inhibiting efficacy against drug-resistant Helicobacter pylori. Anticancer Agents Med Chem 18(13):1875–1884. https://doi.org/10.2174/1871520618666180806104902

    Article  CAS  PubMed  Google Scholar 

  2. Bruges G, Venturini W, Crespo G, Lopez Zambrano M (2018) Pyrogallol induces apoptosis in human platelets. Folia Biol (Praha) 64(1):23–30

    CAS  Google Scholar 

  3. Han YH, Moon HJ, You BR, Park WH (2010) The effects of MAPK inhibitors on pyrogallol-treated Calu-6 lung cancer cells in relation to cell growth, reactive oxygen species and glutathione. Food Chem Toxicol 48(1):271–276. https://doi.org/10.1016/j.fct.2009.10.010

    Article  CAS  PubMed  Google Scholar 

  4. Park WH, Park MN, Han YH, Kim SW (2008) Pyrogallol inhibits the growth of gastric cancer SNU-484 cells via induction of apoptosis. Int J Mol Med 22(2):263–268

    CAS  PubMed  Google Scholar 

  5. Yang CJ, Wang CS, Hung JY, Huang HW, Chia YC, Wang PH, Weng CF, Huang MS (2009) Pyrogallol induces G2-M arrest in human lung cancer cells and inhibits tumor growth in an animal model. Lung Cancer 66(2):162–168. https://doi.org/10.1016/j.lungcan.2009.01.016

    Article  PubMed  Google Scholar 

  6. Han BR, Park WH (2017) MAPK inhibitors enhance cell death in pyrogallol-treated human pulmonary fibroblast cells via increasing O2(*-) levels. Oncol Lett 14(1):1179–1185. https://doi.org/10.3892/ol.2017.6185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Park WH (2016) Pyrogallol induces the death of human pulmonary fibroblast cells through ROS increase and GSH depletion. Int J Oncol 49(2):785–792. https://doi.org/10.3892/ijo.2016.3543

    Article  CAS  PubMed  Google Scholar 

  8. Han YH, Moon HJ, You BR, Kim SZ, Kim SH, Park WH (2009) JNK and p38 inhibitors increase and decrease apoptosis, respectively, in pyrogallol-treated calf pulmonary arterial endothelial cells. Int J Mol Med 24(5):717–722. https://doi.org/10.3892/ijmm_00000284

    Article  CAS  PubMed  Google Scholar 

  9. Han YH, Moon HJ, You BR, Kim SZ, Kim SH, Park WH (2010) Pyrogallol-induced endothelial cell death is related to GSH depletion rather than ROS level changes. Oncol Rep 23(1):287–292

    CAS  PubMed  Google Scholar 

  10. Han YH, Park WH (2010) Pyrogallol-induced calf pulmonary arterial endothelial cell death via caspase-dependent apoptosis and GSH depletion. Food Chem Toxicol 48(2):558–563. https://doi.org/10.1016/j.fct.2009.11.032

    Article  CAS  PubMed  Google Scholar 

  11. Han YH, Park WH (2010) Pyrogallol-induced As4.1 juxtaglomerular cell death is attenuated by MAPK inhibitors via preventing GSH depletion. Arch Toxicol 84(8):631–640. https://doi.org/10.1007/s00204-010-0526-8

    Article  CAS  PubMed  Google Scholar 

  12. Park WH, Han YH, Kim SH, Kim SZ (2007) Pyrogallol, ROS generator inhibits As4.1 juxtaglomerular cells via cell cycle arrest of G2 phase and apoptosis. Toxicology 235(1–2):130–139. https://doi.org/10.1016/j.tox.2007.03.018

    Article  CAS  PubMed  Google Scholar 

  13. Park WH, Han YW, Kim SH, Kim SZ (2007) A superoxide anion generator, pyrogallol induces apoptosis in As4.1 cells through the depletion of intracellular GSH content. Mutat Res 619(1–2):81–92. https://doi.org/10.1016/j.mrfmmm.2007.02.004

    Article  CAS  PubMed  Google Scholar 

  14. Saeki K, Hayakawa S, Isemura M, Miyase T (2000) Importance of a pyrogallol-type structure in catechin compounds for apoptosis-inducing activity. Phytochemistry 53(3):391–394. https://doi.org/10.1016/s0031-9422(99)00513-0

    Article  CAS  PubMed  Google Scholar 

  15. Mitsuhashi S, Saito A, Nakajima N, Shima H, Ubukata M (2008) Pyrogallol structure in polyphenols is involved in apoptosis-induction on HEK293T and K562 cells. Molecules 13(12):2998–3006. https://doi.org/10.3390/molecules13122998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Upadhyay G, Tiwari MN, Prakash O, Jyoti A, Shanker R, Singh MP (2010) Involvement of multiple molecular events in pyrogallol-induced hepatotoxicity and silymarin-mediated protection: evidence from gene expression profiles. Food Chem Toxicol 48(6):1660–1670. https://doi.org/10.1016/j.fct.2010.03.041

    Article  CAS  PubMed  Google Scholar 

  17. Tang G, Yang CY, Nikolovska-Coleska Z, Guo J, Qiu S, Wang R, Gao W, Wang G, Stuckey J, Krajewski K, Jiang S, Roller PP, Wang S (2007) Pyrogallol-based molecules as potent inhibitors of the antiapoptotic Bcl-2 proteins. J Med Chem 50(8):1723–1726. https://doi.org/10.1021/jm061400l

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Maellaro E, Leoncini S, Moretti D, Del Bello B, Tanganelli I, De Felice C, Ciccoli L (2013) Erythrocyte caspase-3 activation and oxidative imbalance in erythrocytes and in plasma of type 2 diabetic patients. Acta Diabetol 50(4):489–495. https://doi.org/10.1007/s00592-011-0274-0

    Article  CAS  PubMed  Google Scholar 

  19. Lang E, Lang F (2015) Mechanisms and pathophysiological significance of eryptosis, the suicidal erythrocyte death. Semin Cell Dev Biol 39:35–42. https://doi.org/10.1016/j.semcdb.2015.01.009

    Article  CAS  PubMed  Google Scholar 

  20. Cassambai S, Mee CJ, Renshaw D, Hussain A (2019) Tiotropium bromide, a long acting muscarinic receptor antagonist triggers intracellular calcium signalling in the heart. Toxicol Appl Pharmacol 384:114778. https://doi.org/10.1016/j.taap.2019.114778

    Article  CAS  PubMed  Google Scholar 

  21. Hernandez G, Villanueva-Ibarra CA, Maldonado-Vega M, Lopez-Vanegas NC, Ruiz-Cascante CE, Calderon-Salinas JV (2019) Participation of phospholipase-A2 and sphingomyelinase in the molecular pathways to eryptosis induced by oxidative stress in lead-exposed workers. Toxicol Appl Pharmacol 371:12–19. https://doi.org/10.1016/j.taap.2019.03.025

    Article  CAS  PubMed  Google Scholar 

  22. Alfhili MA, Nkany MB, Weidner DA, Lee MH (2019) Stimulation of eryptosis by broad-spectrum insect repellent N, N-Diethyl-3-methylbenzamide (DEET). Toxicol Appl Pharmacol 370:36–43. https://doi.org/10.1016/j.taap.2019.03.011

    Article  CAS  PubMed  Google Scholar 

  23. Lang PA, Kaiser S, Myssina S, Wieder T, Lang F, Huber SM (2003) Role of Ca2+-activated K+ channels in human erythrocyte apoptosis. Am J Physiol Cell Physiol 285(6):C1553–C1560

    Article  CAS  Google Scholar 

  24. McCaig WD, Hodges AL, Deragon MA, Haluska RJ Jr, Bandyopadhyay S, Ratner AJ, Spitalnik SL, Hod EA, LaRocca TJ (2019) Storage primes erythrocytes for necroptosis and clearance. Cell Physiol Biochem 53(3):496–507. https://doi.org/10.33594/000000153

    Article  CAS  PubMed  Google Scholar 

  25. Al Mamun Bhuyan A, Lang F (2018) Inhibition of erythrocyte cell membrane scrambling following energy depletion and hyperosmotic shock by Alectinib. Cell Physiol Biochem 51(5):1996–2009. https://doi.org/10.1159/000495777

    Article  CAS  PubMed  Google Scholar 

  26. Bissinger R, Bhuyan AAM, Qadri SM, Lang F (2019) Oxidative stress, eryptosis and anemia: a pivotal mechanistic nexus in systemic diseases. FEBS J 286(5):826–854. https://doi.org/10.1111/febs.14606

    Article  CAS  PubMed  Google Scholar 

  27. Lang F, Bissinger R, Abed M, Artunc F (2017) Eryptosis: the neglected cause of anemia in end stage renal disease. Kidney Blood Press Res 42(4):749–760. https://doi.org/10.1159/000484215

    Article  CAS  PubMed  Google Scholar 

  28. Foller M, Bobbala D, Koka S, Huber SM, Gulbins E, Lang F (2009) Suicide for survival–death of infected erythrocytes as a host mechanism to survive malaria. Cell Physiol Biochem 24(3–4):133–140. https://doi.org/10.1159/000233238

    Article  CAS  PubMed  Google Scholar 

  29. Lang E, Lang F (2015) Triggers, inhibitors, mechanisms, and significance of eryptosis: the suicidal erythrocyte death. Biomed Res Int 2015:513518. https://doi.org/10.1155/2015/513518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lang F, Jilani K, Lang E (2015) Therapeutic potential of manipulating suicidal erythrocyte death. Expert Opin Ther Targets 19(9):1219–1227. https://doi.org/10.1517/14728222.2015.1051306

    Article  CAS  PubMed  Google Scholar 

  31. Ferdous Z, Beegam S, Tariq S, Ali BH, Nemmar A (2018) The in vitro effect of polyvinylpyrrolidone and citrate coated silver nanoparticles on erythrocytic oxidative damage and eryptosis. Cell Physiol Biochem 49(4):1577–1588. https://doi.org/10.1159/000493460

    Article  CAS  PubMed  Google Scholar 

  32. Fink M, Al Mamun Bhuyan A, Zacharopoulou N, Lang F (2018) Taurolidine sensitivity of eryptosis, the suicidal erythrocyte death. Cell Physiol Biochem 51(2):501–512. https://doi.org/10.1159/000495272

    Article  CAS  PubMed  Google Scholar 

  33. Fink M, Al Mamun Bhuyan A, Zacharopoulou N, Lang F (2018) Stimulation of eryptosis, the suicidal erythrocyte death, by costunolide. Cell Physiol Biochem 50(6):2283–2295. https://doi.org/10.1159/000495088

    Article  CAS  PubMed  Google Scholar 

  34. Yeung KW, Lau PM, Tsang HL, Ho HP, Kwan YW, Kong SK (2019) Extracellular histones induced eryptotic death in human erythrocytes. Cell Physiol Biochem 53(1):229–241. https://doi.org/10.33594/000000132

    Article  CAS  PubMed  Google Scholar 

  35. Jemaa M, Fezai M, Lang F (2017) Inhibition of suicidal erythrocyte death by reversine. Cell Physiol Biochem 41(6):2363–2373. https://doi.org/10.1159/000475654

    Article  CAS  PubMed  Google Scholar 

  36. Jemaa M, Fezai M, Bissinger R, Lang F (2017) Methods employed in cytofluorometric assessment of eryptosis, the suicidal erythrocyte death. Cell Physiol Biochem 43(2):431–444. https://doi.org/10.1159/000480469

    Article  CAS  PubMed  Google Scholar 

  37. Tozoni SS, Dias GF, Bohnen G, Grobe N, Pecoits-Filho R, Kotanko P, Moreno-Amaral AN (2019) Uremia and hypoxia independently induce eryptosis and erythrocyte redox imbalance. Cell Physiol Biochem 53:794–804. https://doi.org/10.33594/000000173

    Article  CAS  PubMed  Google Scholar 

  38. Lang PA, Beringer O, Nicolay JP, Amon O, Kempe DS, Hermle T, Attanasio P, Akel A, Schafer R, Friedrich B, Risler T, Baur M, Olbricht CJ, Zimmerhackl LB, Zipfel PF, Wieder T, Lang F (2006) Suicidal death of erythrocytes in recurrent hemolytic uremic syndrome. J Mol Med 84(5):378–388. https://doi.org/10.1007/s00109-006-0058-0

    Article  PubMed  Google Scholar 

  39. Balola AHA, Mayer B, Bartolmas T, Salama A (2019) Sublytic terminal complement components induce eryptosis in autoimmune haemolytic anaemia related to IgM autoantibodies. Cell Physiol Biochem 53(3):453–464. https://doi.org/10.33594/000000150

    Article  CAS  PubMed  Google Scholar 

  40. Voelkl J, Alzoubi K, Mamar AK, Ahmed MS, Abed M, Lang F (2013) Stimulation of suicidal erythrocyte death by increased extracellular phosphate concentrations. Kidney Blood Press Res 38(1):42–51. https://doi.org/10.1159/000355752

    Article  CAS  PubMed  Google Scholar 

  41. Lang E, Jilani K, Bissinger R, Rexhepaj R, Zelenak C, Lupescu A, Lang F, Qadri SM (2015) Vitamin D-rich diet in mice modulates erythrocyte survival. Kidney Blood Press Res 40(4):403–412. https://doi.org/10.1159/000368517

    Article  CAS  PubMed  Google Scholar 

  42. Abed M, Feger M, Alzoubi K, Pakladok T, Frauenfeld L, Geiger C, Towhid ST, Lang F (2013) Sensitization of erythrocytes to suicidal erythrocyte death following water deprivation. Kidney Blood Press Res 37(6):567–578. https://doi.org/10.1159/000355737

    Article  CAS  PubMed  Google Scholar 

  43. Nicolay JP, Schneider J, Niemoeller OM, Artunc F, Portero-Otin M, Haik G Jr, Thornalley PJ, Schleicher E, Wieder T, Lang F (2006) Stimulation of suicidal erythrocyte death by methylglyoxal. Cell Physiol Biochem 18(4–5):223–232. https://doi.org/10.1159/000097669

    Article  CAS  PubMed  Google Scholar 

  44. Lang E, Pozdeev VI, Gatidis S, Qadri SM, Haussinger D, Kubitz R, Herebian D, Mayatepek E, Lang F, Lang KS, Lang PA (2016) Bile acid-induced suicidal erythrocyte death. Cell Physiol Biochem 38(4):1500–1509. https://doi.org/10.1159/000443091

    Article  CAS  PubMed  Google Scholar 

  45. Bissinger R, Schumacher C, Qadri SM, Honisch S, Malik A, Gotz F, Kopp HG, Lang F (2016) Enhanced eryptosis contributes to anemia in lung cancer patients. Oncotarget 7(12):14002–14014. https://doi.org/10.18632/oncotarget.7286

    Article  PubMed  PubMed Central  Google Scholar 

  46. Lang PA, Schenck M, Nicolay JP, Becker JU, Kempe DS, Lupescu A, Koka S, Eisele K, Klarl BA, Rubben H, Schmid KW, Mann K, Hildenbrand S, Hefter H, Huber SM, Wieder T, Erhardt A, Haussinger D, Gulbins E, Lang F (2007) Liver cell death and anemia in Wilson disease involve acid sphingomyelinase and ceramide. Nat Med 13(2):164–170. https://doi.org/10.1038/nm1539

    Article  CAS  PubMed  Google Scholar 

  47. Abed M, Towhid ST, Mia S, Pakladok T, Alesutan I, Borst O, Gawaz M, Gulbins E, Lang F (2012) Sphingomyelinase-induced adhesion of eryptotic erythrocytes to endothelial cells. Am J Physiol Cell Physiol 303(9):C991–999. https://doi.org/10.1152/ajpcell.00239.2012

    Article  CAS  PubMed  Google Scholar 

  48. Borst O, Abed M, Alesutan I, Towhid ST, Qadri SM, Foller M, Gawaz M, Lang F (2012) Dynamic adhesion of eryptotic erythrocytes to endothelial cells via CXCL16/SR-PSOX. Am J Physiol Cell Physiol 302(4):C644–C651

    Article  CAS  Google Scholar 

  49. Chung SM, Bae ON, Lim KM, Noh JY, Lee MY, Jung YS, Chung JH (2007) Lysophosphatidic acid induces thrombogenic activity through phosphatidylserine exposure and procoagulant microvesicle generation in human erythrocytes. Arterioscler Thromb Vasc Biol 27(2):414–421

    Article  CAS  Google Scholar 

  50. Harrison HE, Bunting H, Ordway NK, Albrink WS (1947) The Pathogenesis of the renal injury produced in the dog by hemoglobin or methemoglobin. J Exp Med 86(4):339–356

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the meticulous preparation of the manuscript by Lejla Subasic. Jibin Liu is supported by Chinese Scholarship Council.

Funding

This study was funded by China Agricultural Research System (CARS-42-17), Integration and Demonstration of Key Technologies for Goose Industrial Chain in Sichuan Province (2018NZ0005), Sichuan Veterinary Medicine and Drug Innovation Group of China Agricultural Research System (CARS-SVDIP).

Author information

Authors and Affiliations

Authors

Contributions

JL, AAMB, AC and FL conceived and designed research. Material preparation, data collection and analysis were performed by JL, AAMB, KM and SZ. The first draft of the manuscript was written by FL and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Anchun Cheng or Florian Lang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethics approval

The study is approved by the ethics committee of the University of Tübingen (184/2003V).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 30 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Bhuyan, A.A.M., Ma, K. et al. Inhibition of suicidal erythrocyte death by pyrogallol. Mol Biol Rep 47, 5025–5032 (2020). https://doi.org/10.1007/s11033-020-05568-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05568-3

Keywords

Navigation