Skip to main content

Advertisement

Log in

Erythrocyte caspase-3 activation and oxidative imbalance in erythrocytes and in plasma of type 2 diabetic patients

  • Original Article
  • Published:
Acta Diabetologica Aims and scope Submit manuscript

Abstract

An increased oxidative stress and a decreased life span of erythrocytes (RBCs) are reported in patients with diabetes. Aim of this study was to assess in RBCs from patients with type 2 diabetes whether downstream effector mechanisms of apoptosis, such as activation of caspase-3, is operative, and whether an iron-related oxidative imbalance, occurring inside RBCs and in plasma, could be involved in caspase-3 activation. In 26 patients with type 2 diabetes and in 12 healthy subjects, oxidative stress was evaluated by means of different markers; non-protein-bound iron, methemoglobin and glutathione were determined in RBCs, and non-protein-bound iron was also determined in plasma. Erythrocyte caspase-3 activation was evaluated by an immunosorbent enzyme assay. Arterial hypertension, demographic and standard biochemical data were also evaluated. The results show, for the first time, that type 2 diabetic RBCs put into motion caspase-3 activation, which is significantly higher than in control RBCs. Such an effector mechanism of “eryptosis” was positively correlated to blood glucose levels and to the increased plasma NPBI level. Caspase-3 activation was also positively correlated to occurrence of arterial hypertension. The results suggest that an extracellular oxidative milieu can be responsible for erythrocyte caspase-3 activation in patients with type 2 diabetes. In turn, caspase-3 activation can be envisaged as a novel mechanism which, by impairing the maintenance of erythrocyte shape and function, might contribute to the shortened life span of RBCs from patients with type 2 diabetes and to hemorheological disorders observed in these patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Jay D, Hitomi H, Griendling KK (2006) Oxidative stress and diabetic cardiovascular complications. Free Radic Biol Med 40(2):183–192

    Article  PubMed  CAS  Google Scholar 

  2. Sailaja YR, Baskar R, Saralakumari D (2003) The antioxidant status during maturation of reticulocytes to erythrocytes in type 2 diabetics. Free Radic Biol Med 35(2):133–139

    Article  PubMed  CAS  Google Scholar 

  3. Babu N, Singh M (2004) Influence of hyperglycemia on aggregation, deformability and shape parameters of erythrocytes. Clin Hemorheol Microcirc 31(4):273–280

    PubMed  CAS  Google Scholar 

  4. Halliwell B, Gutteridge JMC (1999) Free radicals, other reactive species and disease. In: Halliwell B, Gutteridge JMC (eds) Free radicals in biology and medicine. Clarendon Press, Oxford, pp 617–783

    Google Scholar 

  5. Wautier JL, Wautier MP, Schmidt AM, Anderson GM, Hori O, Zoukourian C, Capron L, Chappey O, Yan SD, Brett J, Guillausseau PJ, Stern D (1994) Advanced glycation end products (AGEs) on the surface of diabetic erythrocytes bind to the vessel wall via a specific receptor inducing oxidant stress in the vasculature: a link between surface-associated AGEs and diabetic complications. Proc Natl Acad Sci USA 91(16):7742–7746

    Article  PubMed  CAS  Google Scholar 

  6. Piccinini G, Minetti G, Balduini C, Brovelli A (1995) Oxidation state of glutathione and membrane proteins in human red cells of different age. Mech Ageing Dev 78(1):15–26

    Article  PubMed  CAS  Google Scholar 

  7. Hornig R, Lutz HU (2000) Band 3 protein clustering on human erythrocytes promotes binding of naturally occurring anti-band 3 and anti-spectrin antibodies. Exp Gerontol 35(8):1025–1044

    Article  PubMed  CAS  Google Scholar 

  8. Turrini F, Mannu F, Cappadoro M, Ulliers D, Giribaldi G, Arese P (1994) Binding of naturally occurring antibodies to oxidatively and nonoxidatively modified erythrocyte band 3. Biochim Biophys Acta 1190(2):297–303

    Article  PubMed  CAS  Google Scholar 

  9. Leoncini S, Rossi V, Signorini C, Tanganelli I, Comporti M, Ciccoli L (2008) Oxidative stress, erythrocyte ageing and plasma non-protein-bound-iron in diabetic patients. Free Radic Res 42(8):716–724

    Article  PubMed  CAS  Google Scholar 

  10. Kuypers FA, de Jong K (2004) The role of phosphatidylserine in recognition and removal of erythrocytes. Cell Mol Biol 50(2):147–158

    PubMed  CAS  Google Scholar 

  11. Jain SK, Palmer M, Chen Y (1999) Effect of vitamin E and N-acetylcysteine on phosphatidylserine externalization and induction of coagulation by high-glucose-treated human erythrocytes. Metabolism 48(8):957–959

    Article  PubMed  CAS  Google Scholar 

  12. Closse C, Dachary-Prigent J, Boisseau MR (1999) Phosphatidylserine-related adhesion of human erythrocytes to vascular endothelium. Br J Haematol 107(2):300–302

    Article  PubMed  CAS  Google Scholar 

  13. Boas FE, Forman L, Beutler E (1998) Phosphatidylserine exposure and red cell viability in red cell aging and in haemolytic anemia. Proc Natl Acad Sci USA 95(6):3077–3081

    Article  PubMed  CAS  Google Scholar 

  14. Bratosin D, Mazurier J, Tissier JP, Estaquier J, Huart JJ, Ameisen JC, Aminoff D, Montreuil J (1998) Cellular and molecular mechanisms of senescent erythrocyte phagocytosis by macrophages. A review. Biochimie 80(2):173–195

    Article  PubMed  CAS  Google Scholar 

  15. Lang KS, Lang PA, Bauer C, Duraton C, Wieder T, Huber SM, Lang F (2005) Mechanisms of suicidal erythrocyte death. Cell Physiol Biochem 15(5):195–202

    Article  PubMed  CAS  Google Scholar 

  16. Zermati Y, Garrido C, Amsellem S, Fishelson S, Bouscary D, Valensi F, Varet B, Solary E, Hermine O (2001) Caspase activation is required for terminal erythroid differentiation. J Exp Med 193(2):247–254

    Article  PubMed  CAS  Google Scholar 

  17. Mandal D, Moitra PK, Saha S, Basu J (2002) Caspase 3 regulates phosphatidylserine externalization and phagocytosis of oxidatively stressed erythrocytes. FEBS Lett 513(2–3):184–188

    Article  PubMed  CAS  Google Scholar 

  18. Matarrese P, Straface E, Pietraforte D, Gambardella L, Vona R, Maccaglia A, Minetti M, Malorni W (2005) Peroxynitrite induces senescence and apoptosis of red blood cells through the activation of aspartyl and cysteinyl proteases. FASEB J 19(3):416–418

    PubMed  CAS  Google Scholar 

  19. Miki Y, Tazawa T, Hirano K, Matsushima H, Kumamoto S, Hamasaki N, Yamaguchi T, Beppu M (2007) Clearance of oxidized erythrocytes by macrophages: involvement of caspases in the generation of clearance signal at band 3 glycoprotein. Biochem Biophys Res Commun 363(1):57–62

    Article  PubMed  CAS  Google Scholar 

  20. Lang F, Gulbins E, Lerche H, Huber SM, Kempe DS, Föller M (2008) Eryptosis a window to systematic disease. Cell Physiol Biochem 22(5–6):373–380

    Article  PubMed  CAS  Google Scholar 

  21. Lang KS, Roll B, Myssina S, Schittenhelm M, Scheel-Walter HG, Kanz L, Fritz J, Lang F, Huber SM, Wieder T (2002) Enhanced erythrocyte apoptosis in sickle cell anemia, thalassemia and glucose-6-phosphate dehydrogenase deficiency. Cell Physiol Biochem 12(5–6):365–372

    Article  PubMed  CAS  Google Scholar 

  22. American Diabetes Association (2006) Nutrition recommendations and interventions for diabetes-2006: a position statement of the American Diabetes Association. Diabetes Care 29(9):2140–2157

    Article  Google Scholar 

  23. Ferrali M, Ciccoli L, Comporti M (1989) Allyl alcohol-induced hemolysis and its relation to iron release and lipid peroxidation. Biochem Pharmacol 38(11):1819–1925

    Article  PubMed  CAS  Google Scholar 

  24. Beutler E, Duron O, Kelly BM (1963) Improved method for the determination of blood glutathione. J Lab Clin Med 61:882–888

    PubMed  CAS  Google Scholar 

  25. Evelyn KA, Malloy HT (1938) Microdetermination of oxyhemoglobin, methemoglobin and sulfhemoglobin in a single sample of blood. J Biol Chem 240(2):551–552

    Google Scholar 

  26. Clementi ME, Giardina B, Colucci D, Galtieri A, Misiti F (2007) Amyloid-beta peptide affects the oxygen dependence of erythrocyte metabolism: a role for caspase 3. Int J Biochemistry Cell Biol 39(4):727–735

    Article  CAS  Google Scholar 

  27. Comporti M, Signorini C, Buonocore G, Ciccoli L (2002) Iron release, oxidative stress and erythrocyte ageing. Free Radic Biol Med 32(7):568–576

    Article  PubMed  CAS  Google Scholar 

  28. Kell DB (2009) Iron behaving badly: inappropriate iron chelation as a major contributor to the aetiology of vascular and other progressive inflammatory and degenerative diseases. BMC Med Genomics 2(2):1–79

    Google Scholar 

  29. Fernández-Real M, López-Bermejo A, Ricart W (2002) Cross-talk between iron metabolism and diabetes. Diabetes 51(8):2348–2354

    Article  PubMed  Google Scholar 

  30. Lee DE, Liu DY, Jacobs DR Jr, Shin H, Song K, Lee IK, Kim B, Hider RC (2006) Common presence of non-transferrin-bound iron among patients with type 2 diabetes. Diabetes Care 29(5):1090–1095

    Article  PubMed  CAS  Google Scholar 

  31. Swaminathan S, Fonseca VA, Alam MG, Shah SV (2007) The role of iron in diabetes and its complications. Diabetes Care 30(7):1926–1933

    Article  PubMed  CAS  Google Scholar 

  32. Ciccoli L, Rossi V, Leoncini S, Signorini C, Paffetti P, Bracci R, Buonocore G, Comporti M (2003) Iron release in erythrocytes and plasma non protein-bound iron in hypoxic and non hypoxic newborns. Free Radic Res 37(1):51–58

    Article  PubMed  CAS  Google Scholar 

  33. Aiken NR, Satterlee JD, Galey WR (1992) Measurement of intracellular Ca2+ in young and old human erythrocytes using 19F-NMR spectroscopy. Biochim Biophys Acta 1136(2):155–160

    Article  PubMed  CAS  Google Scholar 

  34. Romero PJ, Romero EA (1999) Effect of cell ageing on Ca2+ influx into human red cells. Cell Calcium 26(3–4):131–137

    Article  PubMed  CAS  Google Scholar 

  35. Lang F, Lang KS, Lang PA, Huber SM, Wieder T (2006) Mechanisms and significance of eryptosis. Antioxid Redox Signal 8(7–8):1183–1192

    Article  PubMed  CAS  Google Scholar 

  36. Romano L, Scuteri A, Gugliotta T, Romano P, de Luca G, Sidoti A, Amato A (2002) Sulphate influx in the erythrocytes of normotensive, diabetic and hypertensive patients. Cell Biol Int 26(5):421–426

    Article  PubMed  CAS  Google Scholar 

  37. Liu F, Mizukami H, Sarnaik S, Ostafin A (2005) Calcium-dependent human erythrocyte cytoskeleton stability analysis through atomic force microscopy. J Struct Biol 150(2):200–210

    Article  PubMed  CAS  Google Scholar 

  38. Del Bello B, Moretti D, Gamberucci A, Maellaro E (2007) Cross-talk between calpain and caspase-3/-7 in cisplatin-induced apoptosis of melanoma cells: a major role of calpain inhibition in cell death protection and p53 status. Oncogene 26(19):2717–2726

    Article  PubMed  CAS  Google Scholar 

  39. Suzuki Y, Ohkubo N, Aoto M, Maeda N, Cicha I, Miki T, Mitsuda N (2007) Partecipation of caspase-3-like protease in oxidation-induced impairment of erythrocyte membrane properties. Biorheology 44(3):179–190

    PubMed  CAS  Google Scholar 

  40. Kriebardis AG, Antonelou MH, Stamoulis KE, Economou-Petersen E, Margaritis LH, Papassideri IS (2007) Storage-dependent remodelling of the red blood cell membrane is associated with increased immunoglobulin G binding, lipid raft rearrangement, and caspase activation. Transfusion 47(7):1212–1220

    Article  PubMed  CAS  Google Scholar 

  41. Mandal D, Mazumder A, Das P, Kundu M, Basu J (2005) Fas-, caspase 8-, and caspase 3-dependent signaling regulates the activity of the aminophospholipid translocase and phosphatidylserine externalization in human erythrocytes. J Biol Chem 280(47):39460–39467

    Article  PubMed  CAS  Google Scholar 

  42. Kostantinova E, Ivanova L, Tolstaya T, Mironova E (2006) Rheological properties of blood and parameters of platelet aggregation in arterial hypertension. Clin Hemorheol Microcirculation 35(1–2):135–138

    Google Scholar 

  43. Sandhagen B (1999) Red cell fluidity in hypertension. Clin Hemorheol Microcirc 21(3–4):179–181

    PubMed  CAS  Google Scholar 

  44. Mandal D, Baudin-Creuza V, Bhattacharyya A, Pathak S, Delaunay J, Kundu M, Basu J (2003) Caspase 3-mediated proteolysis of the N-terminal cytoplasmic domain of the human erythroid anion exchanger 1 (band 3). J Biol Chem 278(52):52551–52558

    Article  PubMed  CAS  Google Scholar 

  45. Biswas D, Sen G, Sarkar A, Biswas T (2011) Atorvastatin acts synergistically with N-acetyl cysteine to provide therapeutic advantage against Fas-activated erythrocyte apoptosis during chronic arsenic exposure in rats. Toxicol Appl Pharmacol 250(1):39–53

    Article  PubMed  CAS  Google Scholar 

  46. Bennett V, Stenbuck PJ (1980) Association between ankyrin and the cytoplasmatic domain of band 3 protein isolated from the human erythrocyte membrane. J Biol Chem 255(13):6424–6432

    PubMed  CAS  Google Scholar 

  47. Wang KK (2000) Calpain and caspase: can you tell the difference? Trends Neurosci 23(1):20–26

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant from University of Siena (Research Project entitled to L.C.).

Conflict of interest

The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucia Ciccoli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maellaro, E., Leoncini, S., Moretti, D. et al. Erythrocyte caspase-3 activation and oxidative imbalance in erythrocytes and in plasma of type 2 diabetic patients. Acta Diabetol 50, 489–495 (2013). https://doi.org/10.1007/s00592-011-0274-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00592-011-0274-0

Keywords

Navigation