Skip to main content

Advertisement

Log in

Implication and role of neutrophil gelatinase-associated lipocalin in cancer: lipocalin-2 as a potential novel emerging comprehensive therapeutic target for a variety of cancer types

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Cancer is a leading cause of mortalities worldwide. Over the past few decades, exploration of molecular mechanisms behind cancer initiation and progression has been of great interest in the viewpoint of both basic and clinical scientists. It is generally believed that identification of key molecules implicated in cancer pathology not only improves our understanding of the disease, but also could result in introduction of novel therapeutic strategies. Neutrophil gelatinase-associated lipocalin (NGAL)/lipocalin-2 (LCN2) is a member of lipocalin superfamily with a variety of functions. Although the main function of LCN2 is still unknown, many studies confirmed its significant role in the initiation, progression, and metastasis of various types of cancer. Furthermore, aberrant expression of LCN2 is also concerned with the chemo- and radio-resistant phenotypes of tumors. Here, we will review the contribution of known functions of LCN2 to the pathophysiology of cancer. We also highlight how the deregulated expression of LCN2 is associated with a variety of fatal types of cancer for which there are no effective therapeutic modalities. The unique and multiple functions of LCN2 and its widespread expression in different types of cancer prompted us to suggest LCN2 could be considered either as a valuable diagnostic and prognostic biomarker or as a potential novel therapeutic target.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Miyamoto T, Kashima H, Yamada Y, Kobara H, Asaka R, Ando H et al (2016) Lipocalin 2 enhances migration and resistance against cisplatin in endometrial carcinoma cells. PLoS ONE 11(5):e0155220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Monisha J, Roy N, Padmavathi G, Banik K, Bordoloi D, Khwairakpam A et al (2018) NGAL is downregulated in oral squamous cell carcinoma and leads to increased survival, proliferation, migration and chemoresistance. Cancers 10(7):228

    Article  CAS  PubMed Central  Google Scholar 

  3. Parra E, Ferreira J (2013) Modulation of the response of prostate cancer cell lines to cisplatin treatment using small interfering RNA. Oncol Rep 30(4):1936–1942

    Article  CAS  PubMed  Google Scholar 

  4. Roudkenar MH, Halabian R, Ghasemipour Z, Roushandeh AM, Rouhbakhsh M, Nekogoftar M et al (2008) Neutrophil gelatinase-associated lipocalin acts as a protective factor against H2O2 toxicity. Arch Med Res 39(6):560–566

    Article  CAS  PubMed  Google Scholar 

  5. Yu D-S, Wu C-L, Ping S-Y, Huang Y-L, Shen K-H (2014) NGAL can alternately mediate sunitinib resistance in renal cell carcinoma. J Urol 192(2):559–566

    Article  CAS  PubMed  Google Scholar 

  6. Zheng LT, Lee S, Yin GN, Mori K, Suk K (2009) Down-regulation of lipocalin 2 contributes to chemoresistance in glioblastoma cells. J Neurochem 111(5):1238–1251

    Article  CAS  PubMed  Google Scholar 

  7. Ding G, Fang J, Tong S, Qu L, Jiang H, Ding Q et al (2015) Over-expression of lipocalin 2 promotes cell migration and invasion through activating ERK signaling to increase SLUG expression in prostate cancer. Prostate 75(9):957–968

    Article  CAS  PubMed  Google Scholar 

  8. Akgül B, Bauer B, Zigrino P, Storey A, Mauch C, Pfister H (2011) Upregulation of lipocalin-2 in human papillomavirus-positive keratinocytes and cutaneous squamous cell carcinomas. J Gen Virol 92(2):395–401

    Article  CAS  PubMed  Google Scholar 

  9. Arlinghaus R, Leng X (2008) Requirement of lipocalin 2 for chronic myeloid leukemia. Leuk Lymphoma 49(4):600–603

    Article  CAS  PubMed  Google Scholar 

  10. Barresi V, Ieni A, Bolignano D, Magno C, Buemi M, Barresi G (2010) Neutrophil gelatinase-associated lipocalin immunoexpression in renal tumors: correlation with histotype and histological grade. Oncol Rep 24(2):305–310

    Article  PubMed  Google Scholar 

  11. Barresi V, Vitarelli E, Bonetti LR, Tuccari G, Barresi G (2012) Diagnostic value of neutrophil gelatinase-associated lipocalin (NGAL) immunoexpression in follicular-patterned lesions of the thyroid gland. Virchows Arch 460(3):319–325

    Article  CAS  PubMed  Google Scholar 

  12. Candido S, Abrams SL, Steelman LS, Lertpiriyapong K, Fitzgerald TL, Martelli AM et al (2016) Roles of NGAL and MMP-9 in the tumor microenvironment and sensitivity to targeted therapy. Biochim Biophys Acta 1863(3):438–448

    Article  CAS  PubMed  Google Scholar 

  13. Candido S, Di Maso M, Serraino D, McCubrey JA, Bortolus R, Zanin M et al (2016) Diagnostic value of neutrophil gelatinase-associated lipocalin/matrix metalloproteinase-9 pathway in transitional cell carcinoma of the bladder. Tumor Biol 37(7):9855–9863

    Article  CAS  Google Scholar 

  14. Cheng G, Sun X, Wang J, Xiao G, Wang X, Fan X et al (2014) HIC1 silencing in triple-negative breast cancer drives progression through misregulation of LCN2. Can Res 74(3):862–872

    Article  CAS  Google Scholar 

  15. Cui L, Xu L-Y, Shen Z-Y, Tao Q, Gao S-Y, Lv Z et al (2008) NGALR is overexpressed and regulated by hypomethylation in esophageal squamous cell carcinoma. Clin Cancer Res 14(23):7674–7681

    Article  CAS  PubMed  Google Scholar 

  16. Ding G, Wang J, Feng C, Jiang H, Xu J, Ding Q (2016) Lipocalin 2 over-expression facilitates progress of castration-resistant prostate cancer via improving androgen receptor transcriptional activity. Oncotarget 7(39):64309

    Article  PubMed  PubMed Central  Google Scholar 

  17. Du Z-P, Wu B-L, Xie Y-M, Zhang Y-L, Liao L-D, Zhou F et al (2015) Lipocalin 2 promotes the migration and invasion of esophageal squamous cell carcinoma cells through a novel positive feedback loop. Biochim Biophys Acta 1853(10):2240–2250

    Article  CAS  PubMed  Google Scholar 

  18. Du Z-P, Lv Z, Wu B-L, Wu Z-Y, Shen J-H, Wu J-Y et al (2011) Neutrophil gelatinase-associated lipocalin and its receptor: independent prognostic factors of oesophageal squamous cell carcinoma. J Clin Pathol 64(1):69–74

    Article  PubMed  Google Scholar 

  19. Du Z-P, Yuan H-M, Wu B-L, Chang J-X, Lv Z, Shen J et al (2011) Neutrophil gelatinase-associated lipocalin in gastric carcinoma cells and its induction by TPA are controlled by C/EBPβ. Biochem Cell Biol 89(3):314–324

    Article  CAS  PubMed  Google Scholar 

  20. Duan X, He K, Li J, Cheng M, Song H, Liu J et al (2018) Tumor associated macrophages deliver iron to tumor cells via Lcn2. Int J Physiol Pathophysiol Pharmacol 10(2):105

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Jung M, Mertens C, Bauer R, Rehwald C, Bruene B (2017) Lipocalin-2 and iron trafficking in the tumor microenvironment. Pharmacol Res 120:146–156

    Article  CAS  PubMed  Google Scholar 

  22. Jung M, Mertens C, Brüne B (2015) Macrophage iron homeostasis and polarization in the context of cancer. Immunobiology 220(2):295–304

    Article  CAS  PubMed  Google Scholar 

  23. Jung M, Weigert A, Mertens C, Rehwald C, Brüne B (2017) Iron handling in tumor-associated macrophages—is there a new role for lipocalin-2? Front Immunol 8:1171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Goetz DH, Holmes MA, Borregaard N, Bluhm ME, Raymond KN, Strong RK (2002) The neutrophil lipocalin NGAL is a bacteriostatic agent that interferes with siderophore-mediated iron acquisition. Mol Cell 10(5):1033–1043

    Article  CAS  PubMed  Google Scholar 

  25. Berger T, Cheung CC, Elia AJ, Mak TW (2010) Disruption of the Lcn2 gene in mice suppresses primary mammary tumor formation but does not decrease lung metastasis. Proc Natl Acad Sci 107(7):2995–3000

    Article  PubMed  PubMed Central  Google Scholar 

  26. Drew BG, Hamidi H, Zhou Z, Villanueva CJ, Krum SA, Calkin AC et al (2015) Estrogen receptor (ER) α-regulated lipocalin 2 expression in adipose tissue links obesity with breast cancer progression. J Biol Chem 290(9):5566–5581

    Article  CAS  PubMed  Google Scholar 

  27. Fougère M, Gaudineau B, Barbier J, Guaddachi F, Feugeas J-P, Auboeuf D et al (2010) NFAT3 transcription factor inhibits breast cancer cell motility by targeting the Lipocalin 2 gene. Oncogene 29(15):2292

    Article  CAS  PubMed  Google Scholar 

  28. Gaudineau B, Fougère M, Guaddachi F, Lemoine F, De La Grange P, Jauliac S (2012) Lipocalin 2, the TNF-like receptor TWEAKR and its ligand TWEAK act downstream of NFAT1 to regulate breast cancer cell invasion. J Cell Sci 125(19):4475–4486

    Article  CAS  PubMed  Google Scholar 

  29. Guo P, Yang J, Di Jia MAM, Auguste DT (2016) ICAM-1-targeted, Lcn2 siRNA-encapsulating liposomes are potent anti-angiogenic agents for triple negative breast cancer. Theranostics 6(1):1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Guo P, You J-O, Yang J, Jia D, Moses MA, Auguste DT (2014) Inhibiting metastatic breast cancer cell migration via the synergy of targeted, pH-triggered siRNA delivery and chemokine axis blockade. Mol Pharm 11(3):755–765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jones C, Mackay A, Grigoriadis A, Cossu A, Reis-Filho JS, Fulford L et al (2004) Expression profiling of purified normal human luminal and myoepithelial breast cells: identification of novel prognostic markers for breast cancer. Can Res 64(9):3037–3045

    Article  CAS  Google Scholar 

  32. Jung M, Ören B, Mora J, Mertens C, Dziumbla S, Popp R et al (2016) Lipocalin 2 from macrophages stimulated by tumor cell–derived sphingosine 1-phosphate promotes lymphangiogenesis and tumor metastasis. Sci Signal 9(434):ra64-ra

    Article  CAS  Google Scholar 

  33. Kubben FJ, Sier CF, Hawinkels LJ, Tschesche H, van Duijn W, Zuidwijk K et al (2007) Clinical evidence for a protective role of lipocalin-2 against MMP-9 autodegradation and the impact for gastric cancer. Eur J Cancer 43(12):1869–1876

    Article  CAS  PubMed  Google Scholar 

  34. Leng X, Ding T, Lin H, Wang Y, Hu L, Hu J et al (2009) Inhibition of lipocalin 2 impairs breast tumorigenesis and metastasis. Can Res 69(22):8579–8584

    Article  CAS  Google Scholar 

  35. Leng X, Wu Y, Arlinghaus RB (2011) Relationships of lipocalin 2 with breast tumorigenesis and metastasis. J Cell Physiol 226(2):309–314

    Article  CAS  PubMed  Google Scholar 

  36. Mertens C, Mora J, Ören B, Grein S, Winslow S, Scholich K et al (2018) Macrophage-derived lipocalin-2 transports iron in the tumor microenvironment. Oncoimmunology 7(3):e1408751

    Article  PubMed  Google Scholar 

  37. Ören B, Urosevic J, Mertens C, Mora J, Guiu M, Gomis RR et al (2016) Tumour stroma-derived lipocalin-2 promotes breast cancer metastasis. J Pathol 239(3):274–285

    Article  CAS  PubMed  Google Scholar 

  38. Shi H, Gu Y, Yang J, Xu L, Mi W, Yu W (2008) Lipocalin 2 promotes lung metastasis of murine breast cancer cells. J Exp Clin Cancer Res 27(1):83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yang J, Bielenberg DR, Rodig SJ, Doiron R, Clifton MC, Kung AL et al (2009) Lipocalin 2 promotes breast cancer progression. Proc Natl Acad Sci 106(10):3913–3918

    Article  PubMed  PubMed Central  Google Scholar 

  40. Mahadevan NR, Rodvold J, Almanza G, Pérez AF, Wheeler MC, Zanetti M (2011) ER stress drives Lipocalin 2 upregulation in prostate cancer cells in an NF-κB-dependent manner. BMC Cancer 11(1):229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Muşlu N, Ercan B, Akbayır S, Balcı Ş, Ovla HD, Bozlu M (2017) Neutrophil gelatinase-associated lipocalin as a screening test in prostate cancer. Turk J Urol 43(1):30

    Article  PubMed  PubMed Central  Google Scholar 

  42. Tung MC, Hsieh SC, Yang SF, Cheng CW, Tsai RT, Wang SC et al (2013) Knockdown of lipocalin-2 suppresses the growth and invasion of prostate cancer cells. Prostate 73(12):1281–1290

    Article  CAS  PubMed  Google Scholar 

  43. Glassford NJ, Schneider AG, Xu S, Eastwood GM, Young H, Peck L et al (2013) The nature and discriminatory value of urinary neutrophil gelatinase-associated lipocalin in critically ill patients at risk of acute kidney injury. Intensive Care Med 39(10):1714–1724

    Article  CAS  PubMed  Google Scholar 

  44. Singer E, Markó L, Paragas N, Barasch J, Dragun D, Müller DN et al (2013) Neutrophil gelatinase-associated lipocalin: pathophysiology and clinical applications. Acta Physiol 207(4):663–672

    Article  CAS  Google Scholar 

  45. Chakraborty S, Kaur S, Tong Z, Batra SK, Guha S (2011) Neutrophil gelatinase associated lipocalin: structure, function and role in human pathogenesis. InTech, London

  46. Dartt DA (2011) Tear lipocalin: structure and function. Ocular Surf 9(3):126–138

    Article  Google Scholar 

  47. Bouchet S, Bauvois B (2014) Neutrophil gelatinase-associated lipocalin (NGAL), pro-matrix metalloproteinase-9 (pro-MMP-9) and their complex pro-MMP-9/NGAL in leukaemias. Cancers 6(2):796–812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chakraborty S, Kaur S, Guha S, Batra SK (2012) The multifaceted roles of neutrophil gelatinase associated lipocalin (NGAL) in inflammation and cancer. Biochim Biophys Acta 1826(1):129–169

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Bakhshandeh Z, Halabian R, Imani Fooladi AA, Jahanian-Najafabadi A, Jalili MA, Roudkenar MH (2014) Recombinant human lipocalin 2 acts as an antibacterial agent to prevent platelet contamination. Hematology 19(8):487–492

    Article  CAS  PubMed  Google Scholar 

  50. Flo TH, Smith KD, Sato S, Rodriguez DJ, Holmes MA, Strong RK et al (2004) Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron. Nature 432(7019):917

    Article  CAS  PubMed  Google Scholar 

  51. Roudkenar MH, Kuwahara Y, Baba T, Roushandeh AM, Ebishima S, Abe S et al (2007) Oxidative stress induced lipocalin 2 gene expression: addressing its expression under the harmful conditions. J Radiat Res 48(1):39–44

    Article  CAS  PubMed  Google Scholar 

  52. Halabian R, Roudkenar MH, Jahanian-Najafabadi A, Hosseini KM, Tehrani HA (2015) Co-culture of bone marrow-derived mesenchymal stem cells overexpressing lipocalin 2 with HK-2 and HEK293 cells protects the kidney cells against cisplatin-induced injury. Cell Biol Int 39(2):152–163

    Article  CAS  PubMed  Google Scholar 

  53. Bahmani B, Roudkenar MH, Halabian R, Jahanian-Najafabadi A, Amiri F, Jalili MA (2014) Lipocalin 2 decreases senescence of bone marrow-derived mesenchymal stem cells under sub-lethal doses of oxidative stress. Cell Stress Chaperones 19(5):685–693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Roudkenar MH, Halabian R, Bahmani P, Roushandeh AM, Kuwahara Y, Fukumoto M (2011) Neutrophil gelatinase-associated lipocalin: a new antioxidant that exerts its cytoprotective effect independent on Heme Oxygenase-1. Free Radic Res 45(7):810–819

    Article  CAS  PubMed  Google Scholar 

  55. Sadeghi F, Etebari M, Roudkenar MH, Jahanian-Najafabadi A (2018) Lipocalin2 Protects Human Embryonic Kidney Cells against Cisplatin-Induced Genotoxicity. Iran J Pharm Res 17(1):147

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Bahmani P, Halabian R, Rouhbakhsh M, Roushandeh AM, Masroori N, Ebrahimi M et al (2010) Neutrophil gelatinase-associated lipocalin induces the expression of heme oxygenase-1 and superoxide dismutase 1, 2. Cell Stress Chaperones 15(4):395–403

    Article  CAS  PubMed  Google Scholar 

  57. Halabian R, Tehrani HA, Jahanian-Najafabadi A, Roudkenar MH (2013) Lipocalin-2-mediated upregulation of various antioxidants and growth factors protects bone marrow-derived mesenchymal stem cells against unfavorable microenvironments. Cell Stress Chaperones 18(6):785–800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Shen Z, Zhao W, Gu J, Zhang Z, Yan L (2003) Expression of matrix metalloproteinase-9 and its complex in the urine of breast cancer patients. Chin J Surg 41(11):817–819

    PubMed  Google Scholar 

  59. Bauer M, Eickhoff JC, Gould MN, Mundhenke C, Maass N, Friedl A (2008) Neutrophil gelatinase-associated lipocalin (NGAL) is a predictor of poor prognosis in human primary breast cancer. Breast Cancer Res Treat 108(3):389–397

    Article  CAS  PubMed  Google Scholar 

  60. Pitteri SJ, Faca VM, Kelly-Spratt KS, Kasarda AE, Wang H, Zhang Q et al (2008) Plasma proteome profiling of a mouse model of breast cancer identifies a set of up-regulated proteins in common with human breast cancer cells. J Proteome Res 7(4):1481–1489

    Article  CAS  PubMed  Google Scholar 

  61. Provatopoulou X, Gounaris A, Kalogera E, Zagouri F, Flessas I, Goussetis E et al (2009) Circulating levels of matrix metalloproteinase-9 (MMP-9), neutrophil gelatinase-associated lipocalin (NGAL) and their complex MMP-9/NGAL in breast cancer disease. BMC Cancer 9(1):390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhang Y, Dong Y, Lv K, Zhao Q, Su J (2016) Structural comparison of gene relevance networks for breast cancer tissues in different grades. Comb Chem High Throughput Screen 19(9):714–719

    Article  CAS  PubMed  Google Scholar 

  63. Linjawi S, AlGaithy Z, Sindi S, Hamdi N, Linjawi A, Alharbi M (2018) Regulation of Lipocalin-2 oncogene and its impact on gene polymorphisms on breast cancer patients in Jeddah, Saudi Arabia. Saudi Med J 39(6):558

    Article  PubMed  PubMed Central  Google Scholar 

  64. Wang L, Li H, Wang J, Gao W, Lin Y, Jin W et al (2011) C/EBP ζ targets to neutrophil gelatinase-associated lipocalin (NGAL) as a repressor for metastasis of MDA-MB-231 cells. Biochim Biophys Acta 1813(10):1803–1813

    Article  CAS  PubMed  Google Scholar 

  65. Sung H, Choi J-Y, Lee S-A, Lee K-M, Han S, Jeon S et al (2012) The association between the preoperative serum levels of lipocalin-2 and matrix metalloproteinase-9 (MMP-9) and prognosis of breast cancer. BMC Cancer 12(1):193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wenners AS, Mehta K, Loibl S, Park H, Mueller B, Arnold N et al (2012) Neutrophil gelatinase-associated lipocalin (NGAL) predicts response to neoadjuvant chemotherapy and clinical outcome in primary human breast cancer. PLoS ONE 7(10):e45826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Fernández CA, Yan L, Louis G, Yang J, Kutok JL, Moses MA (2005) The matrix metalloproteinase-9/neutrophil gelatinase-associated lipocalin complex plays a role in breast tumor growth and is present in the urine of breast cancer patients. Clin Cancer Res 11(15):5390–5395

    Article  PubMed  Google Scholar 

  68. Jung M, Weigert A, Tausendschön M, Mora J, Ören B, Sola A et al (2012) Interleukin-10-induced neutrophil gelatinase-associated lipocalin production in macrophages with consequences for tumor growth. Mol Cell Biol 32(19):3938–3948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zhang H, Xu L, Xiao D, Xie J, Zeng H, Wang Z et al (2007) Upregulation of neutrophil gelatinase-associated lipocalin in oesophageal squamous cell carcinoma: significant correlation with cell differentiation and tumour invasion. J Clin Pathol 60(5):555–561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Iannetti A, Pacifico F, Acquaviva R, Lavorgna A, Crescenzi E, Vascotto C et al (2008) The neutrophil gelatinase-associated lipocalin (NGAL), a NF-κB-regulated gene, is a survival factor for thyroid neoplastic cells. Proc Natl Acad Sci 105(37):14058–14063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Volpe V, Raia Z, Sanguigno L, Somma D, Mastrovito P, Moscato F et al (2013) NGAL controls the metastatic potential of anaplastic thyroid carcinoma cells. J Clin Endocrinol Metab 98(1):228–235

    Article  CAS  PubMed  Google Scholar 

  72. Ma H, Xu S, Yan J, Zhang C, Qin S, Wang X et al (2014) The value of tumor markers in the diagnosis of papillary thyroid carcinoma alone and in combination. Pol J Pathol 65(3):202–209

    Article  PubMed  Google Scholar 

  73. Lin C-W, Yang W-E, Lee W-J, Hua K-T, Hsieh F-K, Hsiao M et al (2016) Lipocalin 2 prevents oral cancer metastasis through carbonic anhydrase IX inhibition and is associated with favourable prognosis. Carcinogenesis 37(7):712–722

    Article  CAS  PubMed  Google Scholar 

  74. Hiromoto T, Noguchi K, Yamamura M, Zushi Y, Segawa E, Takaoka K et al (2011) Up-regulation of neutrophil gelatinase-associated lipocalin in oral squamous cell carcinoma: relation to cell differentiation. Oncol Rep 26(6):1415–1421

    CAS  PubMed  Google Scholar 

  75. Chung I-H, Chen C-Y, Lin Y-H, Chi H-C, Huang Y-H, Tai P-J et al (2015) Thyroid hormone-mediated regulation of lipocalin 2 through the Met/FAK pathway in liver cancer. Oncotarget 6(17):15050

    Article  PubMed  PubMed Central  Google Scholar 

  76. Zhang Y, Fan Y, Mei Z (2012) NGAL and NGALR overexpression in human hepatocellular carcinoma toward a molecular prognostic classification. Cancer Epidemiol 36(5):e294–e299

    Article  CAS  PubMed  Google Scholar 

  77. El-Mesallamy HO, Hamdy NM, Zaghloul AS, Sallam AM (2013) Clinical value of circulating lipocalins and insulin-like growth factor axis in pancreatic cancer diagnosis. Pancreas 42(1):149–154

    Article  CAS  PubMed  Google Scholar 

  78. Gomez-Chou SB, Swidnicka-Siergiejko AK, Badi N, Chavez-Tomar M, Lesinski GB, Bekaii-Saab T et al (2017) Lipocalin-2 promotes pancreatic ductal adenocarcinoma by regulating inflammation in the tumor microenvironment. Can Res 77(10):2647–2660

    Article  CAS  Google Scholar 

  79. Kaur S, Chakraborty S, Baine MJ, Mallya K, Smith LM, Sasson A et al (2013) Potentials of plasma NGAL and MIC-1 as biomarker (s) in the diagnosis of lethal pancreatic cancer. PLoS ONE 8(2):e55171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kaur S, Sharma N, Krishn SR, Lakshmanan I, Rachagani S, Baine MJ et al (2014) MUC4-mediated regulation of acute phase protein lipocalin 2 through HER2/AKT/NF-κB signaling in pancreatic cancer. Clin Cancer Res 20(3):688–700

    Article  CAS  PubMed  Google Scholar 

  81. Tong Z, Kunnumakkara AB, Wang H, Matsuo Y, Diagaradjane P, Harikumar KB et al (2008) Neutrophil gelatinase–associated lipocalin: a novel suppressor of invasion and angiogenesis in pancreatic cancer. Can Res 68(15):6100–6108

    Article  CAS  Google Scholar 

  82. Xu B, Jin D-Y, Lou W-H, Wang D-S (2013) Lipocalin-2 is associated with a good prognosis and reversing epithelial-to-mesenchymal transition in pancreatic cancer. World J Surg 37(8):1892–1900

    Article  PubMed  Google Scholar 

  83. Xu B, Zheng WY, Jin DY, Wang DS, Liu XY, Qin XY (2012) Treatment of pancreatic cancer using an oncolytic virus harboring the lipocalin‐2 gene. Cancer 118(21):5217–5226

    Article  CAS  PubMed  Google Scholar 

  84. Kuhlmann L, Nadler WM, Kerner A, Hanke SA, Noll EM, Eisen C et al (2017) Identification and validation of novel subtype-specific protein biomarkers in pancreatic ductal adenocarcinoma. Pancreas 46(3):311–322

    Article  CAS  PubMed  Google Scholar 

  85. Laurell H, Bouisson M, Berthelémy P, Rochaix P, Déjean S, Besse P et al (2006) Identification of biomarkers of human pancreatic adenocarcinomas by expression profiling and validation with gene expression analysis in endoscopic ultrasound-guided fine needle aspiration samples. World J Gastroenterol 12(21):3344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Moniaux N, Chakraborty S, Yalniz M, Gonzalez J, Shostrom VK, Standop J et al (2008) Early diagnosis of pancreatic cancer: neutrophil gelatinase-associated lipocalin as a marker of pancreatic intraepithelial neoplasia. Br J Cancer 98(9):1540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Tong Z, Chakraborty S, Sung B, Koolwal P, Kaur S, Aggarwal BB et al (2011) Epidermal growth factor down-regulates the expression of neutrophil gelatinase-associated lipocalin (NGAL) through E-cadherin in pancreatic cancer cells. Cancer 117(11):2408–2418

    Article  CAS  PubMed  Google Scholar 

  88. Rahimi S, Roushandeh AM, Ebrahimi A, Samdani AA, Kuwahara Y, Roudkenar MH (2019) CRISPR/Cas9-mediated knockout of Lcn2 effectively enhanced CDDP-induced apoptosis and reduced cell migration capacity of PC3 cells. Life Sci 231:116586

    Article  CAS  PubMed  Google Scholar 

  89. Harding HP, Calfon M, Urano F, Novoa I, Ron D (2002) Transcriptional and translational control in the mammalian unfolded protein response. Annu Rev Cell Dev Biol 18(1):575–599

    Article  CAS  PubMed  Google Scholar 

  90. Wang N, Zhou F, Xiong H, Du S, Ma J, Okai I et al (2012) Screening and identification of distant metastasis-related differentially expressed genes in human squamous cell lung carcinoma. Anat Record 295(5):748–757

    Article  CAS  Google Scholar 

  91. Song B, Zhang H, Jiang L, Chi Y, Tian J, Du W et al (2015) Down-regulation of lipocalin 2 suppresses the growth of human lung adenocarcinoma through oxidative stress involving Nrf2/HO-1 signaling. Acta Biochim Biophys Sin 47(10):805–814

    Article  CAS  PubMed  Google Scholar 

  92. Hsin I-L, Hsiao Y-C, Wu M-F, Jan M-S, Tang S-C, Lin Y-W et al (2012) Lipocalin 2, a new GADD153 target gene, as an apoptosis inducer of endoplasmic reticulum stress in lung cancer cells. Toxicol Appl Pharmacol 263(3):330–337

    Article  CAS  PubMed  Google Scholar 

  93. Hydbring P, De Petris L, Zhang Y, Brandén E, Koyi H, Novak M et al (2018) Exosomal RNA-profiling of pleural effusions identifies adenocarcinoma patients through elevated miR-200 and LCN2 expression. Lung Cancer 124:45–52

    Article  PubMed  Google Scholar 

  94. Sun B, Guo W, Hu S, Yao F, Yu K, Xing J et al (2017) Gprc5a-knockout mouse lung epithelial cells predicts ceruloplasmin, lipocalin 2 and periostin as potential biomarkers at early stages of lung tumorigenesis. Oncotarget 8(8):13532

    PubMed  PubMed Central  Google Scholar 

  95. Ruiz-Morales JM, Dorantes-Heredia R, Arrieta O, Chávez-Tapia NC, Motola-Kuba D (2015) Neutrophil gelatinase-associated lipocalin (NGAL) and matrix metalloproteinase-9 (MMP-9) prognostic value in lung adenocarcinoma. Tumor Biol 36(5):3601–3610

    Article  CAS  Google Scholar 

  96. Tsao AS, Liu S, Lee JJ, Alden CM, Blumenschein GR Jr, Herbst R et al (2013) Clinical and biomarker outcomes of the phase II vandetanib study from the BATTLE trial. J Thorac Oncol 8(5):658–661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Zhang M, Zhao X, Deng Y, Tang B, Sun Q, Zhang Q et al (2015) Neutrophil gelatinase associated lipocalin is an independent predictor of poor prognosis in cases of papillary renal cell carcinoma. J Urol 194(3):647–652

    Article  CAS  PubMed  Google Scholar 

  98. Perrin C, Patard J, Jouan F, Collet N, Theoleyre S, Edeline J et al (2011) The neutrophil gelatinase-associated lipocalin, or LCN 2, marker of aggressiveness in clear cell renal cell carcinoma. Progr Urol 21(12):851–858

    Article  CAS  Google Scholar 

  99. Morrissey JJ, London AN, Lambert MC, Kharasch ED (2011) Sensitivity and specificity of urinary neutrophil gelatinase-associated lipocalin and kidney injury molecule-1 for the diagnosis of renal cell carcinoma. Am J Nephrol 34(5):391–398

    Article  CAS  PubMed  Google Scholar 

  100. Zhang X-F, Zhang Y, Zhang X-H, Zhou S-M, Yang G-G, Wang O-C et al (2009) Clinical significance of Neutrophil gelatinase-associated lipocalin (NGAL) expression in primary rectal cancer. BMC Cancer 9(1):134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Nielsen B, Borregaard N, Bundgaard J, Timshel S, Sehested M, Kjeldsen L (1996) Induction of NGAL synthesis in epithelial cells of human colorectal neoplasia and inflammatory bowel diseases. Gut 38(3):414–420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Reilly P, Teo W, Low M, Amoyo-Brion A, Dominguez-Brauer C, Elia A et al (2013) Lipocalin 2 performs contrasting, location-dependent roles in APCmin tumor initiation and progression. Oncogene 32(10):1233

    Article  CAS  PubMed  Google Scholar 

  103. Miyamoto T, Kashima H, Suzuki A, Kikuchi N, Konishi I, Seki N et al (2011) Laser-captured microdissection-microarray analysis of the genes involved in endometrial carcinogenesis: stepwise up-regulation of lipocalin2 expression in normal and neoplastic endometria and its functional relevance. Hum Pathol 42(9):1265–1274

    Article  CAS  PubMed  Google Scholar 

  104. Miyamoto T, Asaka R, Suzuki A, Takatsu A, Kashima H, Shiozawa T (2011) Immunohistochemical detection of a specific receptor for lipocalin2 (solute carrier family 22 member 17, SLC22A17) and its prognostic significance in endometrial carcinoma. Exp Mol Pathol 91(2):563–568

    Article  CAS  PubMed  Google Scholar 

  105. Mannelqvist M, Stefansson IM, Wik E, Kusonmano K, Raeder MB, Øyan AM et al (2012) Lipocalin 2 expression is associated with aggressive features of endometrial cancer. BMC Cancer 12(1):169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Srdelić Mihalj S, Kuzmić-Prusac I, Zekić-Tomaš S, Šamija-Projić I, Čapkun V (2015) Lipocalin-2 and matrix metalloproteinase-9 expression in high-grade endometrial cancer and their prognostic value. Histopathology 67(2):206–215

    Article  PubMed  Google Scholar 

  107. Li T, Yu L, Wen J, Liao Q, Liu Z (2016) An early-screening biomarker of endometrial carcinoma: NGAL is associated with epithelio-mesenchymal transition. Oncotarget 7(52):86064

    PubMed  PubMed Central  Google Scholar 

  108. Cymbaluk-Ploska A, Chudecka-Głaz A, Pius-Sadowska E, Machaliński B, Sompolska-Rzechuła A, Kwiatkowski S et al (2019) The role of lipocalin-2 serum levels in the diagnostics of endometrial cancer. Cancer Biomark. https://doi.org/10.3233/CBM-181942

    Article  PubMed  PubMed Central  Google Scholar 

  109. Cymbaluk-Płoska A, Chudecka-Głaz A, Pius-Sadowska E, Sompolska-Rzechuła A, Chudecka K, Bulsa M et al (2017) Clinical relevance of NGAL/MMP-9 pathway in patients with endometrial cancer. Dis Mark. https://doi.org/10.1155/2017/6589262

    Article  Google Scholar 

  110. Xu H, Sun X, Sun W (2018) Expression and clinical correlation of NGAL and VEGF in endometrial carcinoma. Eur Rev Med Pharmacol Sci 22(3):632–636

    CAS  PubMed  Google Scholar 

  111. Lin H-H, Liao C-J, Lee Y-C, Hu K-H, Meng H-W, Chu S-T (2011) Lipocalin-2-induced cytokine production enhances endometrial carcinoma cell survival and migration. Int J Biol Sci 7(1):74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Shimada H, Ichikawa H, Ohki M (2002) Potential involvement of the AML1-MTG8 fusion protein in the granulocytic maturation characteristic of the t (8; 21) acute myelogenous leukemia revealed by microarray analysis. Leukemia 16(5):874

    Article  CAS  PubMed  Google Scholar 

  113. Leng X, Lin H, Ding T, Wang Y, Wu Y, Klumpp S et al (2008) Lipocalin 2 is required for BCR-ABL-induced tumorigenesis. Oncogene 27(47):6110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Villalva C, Sorel N, Bonnet M-L, Guilhot J, Mayeur-Rousse C, Guilhot F et al (2008) Neutrophil gelatinase-associated lipocalin expression in chronic myeloid leukemia. Leuk Lymphoma 49(5):984–988

    Article  CAS  PubMed  Google Scholar 

  115. Devireddy LR, Teodoro JG, Richard FA, Green MR (2001) Induction of apoptosis by a secreted lipocalin that is transcriptionally regulated by IL-3 deprivation. Science 293(5531):829–834

    Article  CAS  PubMed  Google Scholar 

  116. Lin H, Monaco G, Sun T, Ling X, Stephens C, Xie S et al (2005) Bcr-Abl-mediated suppression of normal hematopoiesis in leukemia. Oncogene 24(20):3246

    Article  CAS  PubMed  Google Scholar 

  117. Brabletz T, Kalluri R, Nieto MA, Weinberg RA (2018) EMT in cancer. Nat Rev Cancer 18(2):128

    Article  CAS  PubMed  Google Scholar 

  118. Garg M (2013) Epithelial-mesenchymal transition-activating transcription factors-multifunctional regulators in cancer. World J Stem Cells 5(4):188

    Article  PubMed  PubMed Central  Google Scholar 

  119. Gilles C, Newgreen DF, Sato H, Thompson EW (2005) Matrix metalloproteases and epithelial-to-mesenchymal transition. Rise and fall of epithelial phenotype. Springer, Boston, pp 297–315

    Book  Google Scholar 

  120. Hu L, Hittelman W, Lu T, Ji P, Arlinghaus R, Shmulevich I et al (2009) NGAL decreases E-cadherin-mediated cell–cell adhesion and increases cell motility and invasion through Rac1 in colon carcinoma cells. Lab Invest 89(5):531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Koh S, Lee KH (2015) HGF mediated upregulation of lipocalin 2 regulates MMP9 through nuclear factor-κB activation. Oncol Rep 34(4):2179–2187

    Article  CAS  PubMed  Google Scholar 

  122. Tang J, Li J, Li S, Yu C, Wei C (2015) Effect of inhibiting NGAL gene expression on a549 lung cancer cell migration and invasion. Chin J Lung Cancer 18(4):187–192

    Google Scholar 

  123. Marmé D (2018) Tumor angiogenesis: a key target for cancer therapy. Springer, Singapore

    Google Scholar 

  124. Nishida N, Yano H, Nishida T, Kamura T, Kojiro M (2006) Angiogenesis in cancer. Vasc Health Risk Manage 2(3):213

    Article  CAS  Google Scholar 

  125. Rajabi M, Mousa SA (2017) The role of angiogenesis in cancer treatment. Biomedicines 5(2):34

    Article  CAS  PubMed Central  Google Scholar 

  126. Harati MD, Amiri F, Jaleh F, Mehdipour A, Harati MD, Molaee S et al (2015) Targeting delivery of lipocalin 2-engineered mesenchymal stem cells to colon cancer in order to inhibit liver metastasis in nude mice. Tumor Biol 36(8):6011–6018

    Article  CAS  Google Scholar 

  127. Leung L, Radulovich N, Zhu C-Q, Organ S, Bandarchi B, Pintilie M et al (2012) Lipocalin2 promotes invasion, tumorigenicity and gemcitabine resistance in pancreatic ductal adenocarcinoma. PLoS ONE 7(10):e46677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Yang J, McNeish B, Butterfield C, Moses MA (2013) Lipocalin 2 is a novel regulator of angiogenesis in human breast cancer. FASEB J 27(1):45–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Jauliac S, López-Rodriguez C, Shaw LM, Brown LF, Rao A, Toker A (2002) The role of NFAT transcription factors in integrin-mediated carcinoma invasion. Nat Cell Biol 4(7):540

    Article  CAS  PubMed  Google Scholar 

  130. Mancini M, Toker A (2009) NFAT proteins: emerging roles in cancer progression. Nat Rev Cancer 9(11):810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Tripathi MK, Deane NG, Zhu J, An H, Mima S, Wang X et al (2014) Nuclear factor of activated T-cell activity is associated with metastatic capacity in colon cancer. Can Res 74(23):6947–6957

    Article  CAS  Google Scholar 

  132. Yoeli-Lerner M, Yiu GK, Rabinovitz I, Erhardt P, Jauliac S, Toker A (2005) Akt blocks breast cancer cell motility and invasion through the transcription factor NFAT. Mol Cell 20(4):539–550

    Article  CAS  PubMed  Google Scholar 

  133. Cramer EP, Glenthøj A, Häger M, Juncker-Jensen A, Engelholm LH, Santoni-Rugiu E et al (2012) No effect of NGAL/lipocalin-2 on aggressiveness of cancer in the MMTV-PyMT/FVB/N mouse model for breast cancer. PLoS ONE 7(6):e39646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Okuda M, Inoue J, Fujiwara N, Kawano T, Inazawa J (2017) Subcloning and characterization of highly metastatic cells derived from human esophageal squamous cell carcinoma KYSE150 cells by in vivo selection. Oncotarget 8(21):34670

    Article  PubMed  PubMed Central  Google Scholar 

  135. Yang J, Goetz D, Li J-Y, Wang W, Mori K, Setlik D et al (2002) An iron delivery pathway mediated by a lipocalin. Mol Cell 10(5):1045–1056

    Article  CAS  PubMed  Google Scholar 

  136. Lee E-K, Kim H-J, Lee K-J, Lee H-J, Lee J-S, Kim D-G et al (2011) Inhibition of the proliferation and invasion of hepatocellular carcinoma cells by lipocalin 2 through blockade of JNK and PI3K/Akt signaling. Int J Oncol 38(2):325–333

    Article  CAS  PubMed  Google Scholar 

  137. Mongre RK, Sodhi SS, Sharma N, Ghosh M, Kim JH, Kim N et al (2016) Epigenetic induction of epithelial to mesenchymal transition by LCN2 mediates metastasis and tumorigenesis, which is abrogated by NF-κB inhibitor BRM270 in a xenograft model of lung adenocarcinoma. Int J Oncol 48(1):84–98

    Article  CAS  PubMed  Google Scholar 

  138. Cristóbal I, Torrejón B, González-Alonso P, Manso R, Rojo F, García-Foncillas J (2016) Downregulation of miR-138 as a contributing mechanism to Lcn-2 overexpression in colorectal cancer with liver metastasis. World J Surg 40(4):1021

    Article  PubMed  Google Scholar 

  139. Yamada Y, Miyamoto T, Kashima H, Kobara H, Asaka R, Ando H et al (2016) Lipocalin 2 attenuates iron-related oxidative stress and prolongs the survival of ovarian clear cell carcinoma cells by up-regulating the CD44 variant. Free Radic Res 50(4):414–425

    Article  CAS  PubMed  Google Scholar 

  140. Alpízar-Alpízar W, Laerum OD, Illemann M, Ramírez JA, Arias A, Malespín-Bendaña W et al (2009) Neutrophil gelatinase-associated lipocalin (NGAL/Lcn2) is upregulated in gastric mucosa infected with Helicobacter pylori. Virchows Arch 455(3):225–233

    Article  CAS  PubMed  Google Scholar 

  141. Wang HJ, He XJ, Ma YY, Jiang XT, Xia YJ, Ye ZY et al (2010) Expressions of neutrophil gelatinase-associated lipocalin in gastric cancer: a potential biomarker for prognosis and an ancillary diagnostic test. Anat Rec 293(11):1855–1863

    Article  CAS  Google Scholar 

  142. Shimura T, Dagher A, Sachdev M, Ebi M, Yamada T, Yamada T et al (2015) Urinary ADAM12 and MMP-9/NGAL complex detect the presence of gastric cancer. Cancer Prev Res 8(3):240–248

    Article  CAS  Google Scholar 

  143. Wang H-H, Wu M-M, Chan MWY, Pu Y-S, Chen C-J, Lee T-C (2014) Long-term low-dose exposure of human urothelial cells to sodium arsenite activates lipocalin-2 via promoter hypomethylation. Arch Toxicol 88(8):1549–1559

    Article  CAS  PubMed  Google Scholar 

  144. Liu M-F, Hu Y-Y, Jin T, Xu K, Wang S-H, Du G-Z et al (2015) Matrix metalloproteinase-9/neutrophil gelatinase-associated lipocalin complex activity in human glioma samples predicts tumor presence and clinical prognosis. Dis Mark. https://doi.org/10.1155/2015/138974

    Article  Google Scholar 

  145. Zheng H-C (2017) The molecular mechanisms of chemoresistance in cancers. Oncotarget 8(35):59950

    PubMed  PubMed Central  Google Scholar 

  146. Shiiba M, Saito K, Fushimi K, Ishigami T, Shinozuka K, Nakashima D et al (2013) Lipocalin-2 is associated with radioresistance in oral cancer and lung cancer cells. Int J Oncol 42(4):1197–1204

    Article  PubMed  Google Scholar 

  147. Altomare DA, Testa JR (2005) Perturbations of the AKT signaling pathway in human cancer. Oncogene 24(50):7455

    Article  CAS  PubMed  Google Scholar 

  148. Fu Y, Wey S, Wang M, Ye R, Liao C-P, Roy-Burman P et al (2008) Pten null prostate tumorigenesis and AKT activation are blocked by targeted knockout of ER chaperone GRP78/BiP in prostate epithelium. Proc Natl Acad Sci 105(49):19444–19449

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Part of this study was supported by Guilan University of Medical Sciences (Grant No: IR.GUMS.REC.1396.393).

Author information

Authors and Affiliations

Authors

Contributions

SR, AMR and EA collected all data. SR and AMR wrote the initial manuscript. MHR and AJN controlled and managed the project and finalized it. All authors revised the article carefully and confirmed the edited version of the paper.

Corresponding author

Correspondence to Mehryar Habibi Roudkenar.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahimi, S., Roushandeh, A.M., Ahmadzadeh, E. et al. Implication and role of neutrophil gelatinase-associated lipocalin in cancer: lipocalin-2 as a potential novel emerging comprehensive therapeutic target for a variety of cancer types. Mol Biol Rep 47, 2327–2346 (2020). https://doi.org/10.1007/s11033-020-05261-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05261-5

Keywords

Navigation