Skip to main content

Advertisement

Log in

Aldehyde dehydrogenase-positive melanoma stem cells in tumorigenesis, drug resistance and anti-neoplastic immunotherapy

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Cancer stem cells (CSCs), a rare subset of cancer cells, are well known for their self-renewing capacity. CSCs play a critical role in therapeutic failure and are responsible for poor prognosis in leukemia and various solid tumors. However, it is still unclear how CSCs initiate carcinogenesis and evade the immune response. In humans, the melanoma initiating cells (MICs) are recognized as the CSCs in melanomas, and were verified to possess CSC potentials. The enzymatic system, aldehyde dehydrogenase (ALDH) is considered to be a specific marker for CSCs in several tumors. The expression of ALDH in MICs may be closely correlated with phenotypic heterogeneity, melanoma-genesis, metastasis, and drug resistance. The ALDH+ CSCs/MICs not only serve as an indicator for therapeutic efficacy, but have also become a target for the treat of melanoma. In this review, we initially introduce the multiple capacities of MICs in melanoma. Then, we summarize in vivo and in vitro studies that illustrate the relationship between ALDH and MICs. Furthermore, understanding of chemotherapy resistance in melanoma relies on ALDH+ MICs. Finally, we review studies that focus on melanoma immunotherapies, rendering ALDH a potential marker to evaluate the efficacy of anti-neoplastic therapies or an adjuvant anti-melanoma target.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. The Cancer Genome Atlas Network (2015) Genomic classification of cutaneous melanoma. Cell 161:1681–1696

    PubMed Central  Google Scholar 

  2. Tsao H, Chin L, Garraway LA et al (2012) Melanoma: from mutations to medicine. Genes Dev 26:1131–1155

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Kiuru M, Busam KJ (2017) The NF1 gene in tumor syndromes and melanoma. Lab Investig 97:146–157

    CAS  PubMed  Google Scholar 

  4. Villani V, Sabbatino F, Ferrone CR et al (2015) Melanoma initiating cells: where do we stand? Melanoma Manag 2:109–114

    PubMed  PubMed Central  Google Scholar 

  5. Vasiliou V, Nebert DW (2005) Analysis and update of the human aldehyde dehydrogenase (ALDH) gene family. Hum Genomics 2:138–143

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Vassalli G (2019) Aldehyde dehydrogenases: not just markers, but functional regulators of stem cells. Stem Cells Int.https://doi.org/10.1155/2019/3904645

    Article  PubMed  PubMed Central  Google Scholar 

  7. Jackson B, Brocker C, Thompson DC et al (2011) Update on the aldehyde dehydrogenase gene (ALDH) superfamily. Hum Genomics 5:283–303

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Sládek NE (2003) Human aldehyde dehydrogenases: potential pathological, pharmacological, and toxicological impact. J Biochem Mol Toxicol 17:7–23

    PubMed  Google Scholar 

  9. Na HK, Lee JY (2017) Molecular basis of alcohol-related gastric and colon cancer. Int J Mol Sci 18:1116

    PubMed Central  Google Scholar 

  10. Castelli G, Pelosi E, Testa U (2017) Liver cancer: molecular characterization, clonal evolution and cancer. Stem Cells Cancers 9:127

    Google Scholar 

  11. Bourguignon LYW, Christine E, Marisa S (2017) Activation of matrix hyaluronan-mediated CD44 signaling, epigenetic regulation and chemoresistance in head and neck cancer stem cells. Int J Mol Sci 18:1849

    PubMed Central  Google Scholar 

  12. Suresh R, Ali S, Ahmad A et al (2015) The role of cancer stem cells in recurrent and drug-resistant lung cancer. Adv Exp Med Biol 890:57–74

    Google Scholar 

  13. Yan S, Wu G (2017) Could ALDH2*2 be the reason for low incidence and mortality of ovarian cancer for East Asia women? Oncotarget 9(15):12503–12512

    PubMed  PubMed Central  Google Scholar 

  14. Corominas-Faja B, Oliveras-Ferraros C, Cuyàs E (2013) Stem cell-like ALDH(bright) cellular states in EGFR-mutant non-small cell lung cancer: a novel mechanism of acquired resistance to erlotinib targetable with the natural polyphenol silibinin. Cell Cycle 12:3390–3404

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Uomori T, Horimoto Y, Mogushi K et al (2017) Relationship between alcohol metabolism and chemotherapy-induced emetic events in breast cancer patients. Breast Cancer 24:702–707

    PubMed  Google Scholar 

  16. Samson JM, Ravindran Menon D, Smith DE et al (2019) Clinical implications of ALDH1A1 and ALDH1A3 mRNA expression in melanoma subtypes. Chem Biol Interact 314:108822

    CAS  PubMed  Google Scholar 

  17. Amann PM, Hofmann C, Freudenberger M et al (2012) Expression and activity of alcohol and aldehyde dehydrogenases in melanoma cells and in melanocytes. J Cell Biochem 113:792–299

    CAS  PubMed  Google Scholar 

  18. Brinckerhoff CE (2017) Cancer stem cells (CSCs) in melanoma. J Cell Physiol 232:2674–2678

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Quintana E, Shackleton M, Sabel MS et al (2008) Efficient tumour formation by single human melanoma cells. Nature 456:593–598

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Shultz LD, Lyons BL, Burzenski LM et al (2005) Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2Rγnull mice engrafted with mobilized human hemopoietic stem cells. J Immunol 174:6477–6489

    CAS  PubMed  Google Scholar 

  21. Marzagalli M, Raimondi M, Fontana F et al (2019) Cellular and molecular biology of cancer stem cells in melanoma: possible therapeutic implications. Semin Cancer Biol 59:221–235

    CAS  PubMed  Google Scholar 

  22. Schmidt P, Kopecky C, Hombach A et al (2011) Eradication of melanomas by targeted elimination of a minor subset of tumor cells. Proc Natl Acad Sci USA 108:2474–2479

    CAS  PubMed  Google Scholar 

  23. Schlaak M, Schmidt P, Bangard C et al (2012) Regression of metastatic melanoma in a patient by antibody targeting of cancer stem cells. Oncotarget 3:22–30

    PubMed  PubMed Central  Google Scholar 

  24. Gonçalves JM, Silva CAB, Rivero ERC et al (2019) Inhibition of cancer stem cells promoted by pimozide. Cli Exp Pharmacol Physiol 46:116–125

    Google Scholar 

  25. Ma I, Allan AL (2011) The role of human aldehyde dehydrogenase in normal and cancer stem cells. Stem Cell Rev 7:292–306

    CAS  Google Scholar 

  26. Ginestier C, Hur M, Charafe-Jauffret E (2007) ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 1:555–567

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Jiang F (2009) Aldehyde dehydrogenase 1 is a tumor stem cell-associated marker in lung cancer. Mol Cancer Res 7:330–338

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Xu X, Chai S, Wang P et al (2015) Aldehyde dehydrogenases and cancer stem cells. Cancer Lett 369:50–57

    CAS  PubMed  Google Scholar 

  29. Prasmickaite L, Engesaeter B, Skrbo N, Hellenes T et al (2010) Aldehyde dehydrogenase (ALDH) activity does not select for cells with enhanced aggressive properties in malignant melanoma. PLoS ONE 5:e10731

    PubMed  PubMed Central  Google Scholar 

  30. Yang J, Price MA, Li GY et al (2009) Melanoma proteoglycan modifies gene expression to stimulate tumor cell motility, growth, and epithelial-to-mesenchymal transition. Cancer Res 69:7538–7547

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Boonyaratanakornkit JB, Yue L, Strachan LR et al (2010) Selection of tumorigenic melanoma cells using ALDH. J Investig Dermatol 130:2799–2808

    CAS  PubMed  Google Scholar 

  32. Ohmura-Kakutani H, Akiyama K, Maishi N et al (2014) Identification of tumor endothelial cells with high aldehyde dehydrogenase activity and a highly angiogenic phenotype. PLoS ONE 9:e113910

    PubMed  PubMed Central  Google Scholar 

  33. Wilson-Robles HM, Daly M, Pfent C et al (2015) Identification and evaluation of putative tumour-initiating cells in canine malignant melanoma cell lines. Vet Comp Oncol 13:60–69

    CAS  PubMed  Google Scholar 

  34. Luo Y, Dallaglio K, Chen Y et al (2012) ALDH1A isozymes are markers of human melanoma stem cells and potential therapeutic targets. Stem Cells 30:2100–2113

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Wilson MA, Schuchter LM (2016) Chemotherapy for melanoma. Cancer Treat Res 167:209–229

    PubMed  Google Scholar 

  36. Flaherty KT, Hodi FS, Fisher DE (2012) From genes to drugs: targeted strategies for melanoma. Nat Rev Cancer 12:349–361

    CAS  PubMed  Google Scholar 

  37. Chapman PB, Hauschild A, Robert C et al (2011) Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med 364:2507–2516

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Li S, Wu X, Chen P et al (2018) Interferon-α versus interleukin-2 in Chinese patients with malignant melanoma: a randomized, controlled, trial. Anticancer Drugs 30:402–409

    Google Scholar 

  39. Simon A, Kourie HR, Kerger J (2017) Is there still a role for cytotoxic chemotherapy after targeted therapy and immunotherapy in metastatic melanoma? a case report and literature review. Chin J Cancer 36:10

    PubMed  PubMed Central  Google Scholar 

  40. Heppner GH (1984) Tumor heterogeneity. Cancer Res 44:2259–2265

    CAS  PubMed  Google Scholar 

  41. Ahn A, Chatterjee A, Eccles MR (2017) The slow cycling phenotype: a growing problem for treatment resistance in melanoma. Mol Cancer Ther 16:1002–1009

    CAS  PubMed  Google Scholar 

  42. Caswell DR, Swanton C (2017) The role of tumour heterogeneity and clonal cooperativity in metastasis, immune evasion and clinical outcome. BMC Med 15:133

    PubMed  PubMed Central  Google Scholar 

  43. Shi H, Hugo W, Kong X et al (2014) Acquired resistance and clonal evolution in melanoma during BRAF inhibitor therapy. Cancer Discov 4:80–93

    CAS  PubMed  Google Scholar 

  44. Menon DR, Das S, Krepler C et al (2014) A stress-induced early innate response causes multidrug tolerance in melanoma. Oncogene 34:4448–4459

    PubMed Central  Google Scholar 

  45. Busse A, Keilholz U (2011) Role of TGF-β in melanoma. Curr Pharm Biotechnol 12:2165–2175

    CAS  PubMed  Google Scholar 

  46. Cantelli G, Orgaz JL, Rodríguez-Hernández I et al (2015) TGF-β-induced transcription sustains amoeboid melanoma migration and dissemination. Curr Biol 25:2899–2914

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Spender LC, Ferguson GJ, Liu S et al (2016) Mutational activation of BRAF confers sensitivity to transforming growth factor beta inhibitors in human cancer cells. Oncotarget 7:81995–82012

    PubMed  PubMed Central  Google Scholar 

  48. Li S, Song Y, Quach C et al (2019) Transcriptional regulation of autophagy-lysosomal function in BRAF-driven melanoma progression and chemoresistance. Nat Commun 10:1693

    PubMed  PubMed Central  Google Scholar 

  49. Teng Y, Wang X, Wang Y et al (2010) Wnt/β-catenin signaling regulates cancer stem cells in lung cancer A549 cells. Biochem Biophys Res Commun 392:373–379

    CAS  PubMed  Google Scholar 

  50. Xue G, Romano E, Massi D et al (2016) Wnt/β-catenin signaling in melanoma: preclinical rationale and novel therapeutic insights. Cancer Treat Rev 49:1–12

    CAS  PubMed  Google Scholar 

  51. Lu H, Liu S, Zhang G et al (2017) PAK signalling drives acquired drug resistance to MAPK inhibitors in BRAF-mutant melanomas. Nature 550:133–136

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Suleymanova N, Crudden C, Worrall C et al (2017) Enhanced response of melanoma cells to MEK inhibitors following unbiased IGF-1R down-regulation. Oncotarget 8:82256–82267

    PubMed  PubMed Central  Google Scholar 

  53. Cheli Y, Guiliano S, Botton T et al (2011) Mitf is the key molecular switch between mouse or human melanoma initiating cells and their differentiated progeny. Oncogene 30:2307–2318

    CAS  PubMed  Google Scholar 

  54. Müller J, Krijgsman O, Tsoi J (2013) Low MITF/AXL ratio predicts early resistance to multiple targeted drugs in melanoma. Nat Commun 5:5712

    Google Scholar 

  55. Sun C, Wang L, Huang S et al (2014) Reversible and adaptive resistance to BRAF(V600E) inhibition in melanoma. Nature 508:118–122

    CAS  PubMed  Google Scholar 

  56. Zhao D, Mo Y, Li MT et al (2014) NOTCH-induced aldehyde dehydrogenase 1A1 deacetylation promotes breast cancer stem cells. J Clin Investig 124:5453–5465

    PubMed  Google Scholar 

  57. Chen YJ, Sims-Mourtada J, Izzo J et al (2007) Targeting the hedgehog pathway to mitigate treatment resistance. Cell Cycle 6:1826–1830

    CAS  PubMed  Google Scholar 

  58. Januchowski R, Wojtowicz K, Zabel M (2013) The role of aldehyde dehydrogenase (ALDH) in cancer drug resistance. Biomed Pharmacother 67:669–680

    CAS  PubMed  Google Scholar 

  59. Tomonori T, Koji M, Kenzo S et al (2009) Association of breast cancer stem cells identified by aldehyde dehydrogenase 1 expression with resistance to sequential Paclitaxel and epirubicin-based chemotherapy for breast cancers. Clin Cancer Res 15:4234–4241

    Google Scholar 

  60. Croker AK, Allan AL (2012) Inhibition of aldehyde dehydrogenase (ALDH) activity reduces chemotherapy and radiation resistance of stem-like ALDH hi CD44+ human breast cancer cells. Breast Cancer Res Treat 133:75–87

    CAS  PubMed  Google Scholar 

  61. Moreb JS, Maccow C, Schweder M et al (2000) Expression of antisense RNA to aldehyde dehydrogenase class-1 sensitizes tumor cells to 4-hydroperoxycyclophosphamide in vitro. J Pharmacol Exp Ther 293:390–396

    CAS  PubMed  Google Scholar 

  62. Sun QL, Sha HF, Yang XH et al (2011) Comparative proteomic analysis of paclitaxel sensitive A549 lung adenocarcinoma cell line and its resistant counterpart A549-Taxol. J Cancer Res Clin Oncol 137:521–532

    CAS  PubMed  Google Scholar 

  63. Landen CN, Goodman B, Katre AA et al (2010) Targeting aldehyde dehydrogenase cancer stem cells in ovarian cancer. Mol Cancer Ther 9:3186–3199

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Januchowski R, Wojtowicz K, Sterzyńska K et al (2016) Inhibition of ALDH1A1 activity decreases expression of drug transporters and reduces chemotherapy resistance in ovarian cancer cell lines. Int J Biochem Cell Biol 78:248–259

    CAS  PubMed  Google Scholar 

  65. Kozłowska A, Mackiewicz J, Mackiewicz A (2013) Therapeutic gene modified cell based cancer vaccines. Gene 525:200–207

    PubMed  Google Scholar 

  66. Murphy GF, Wilson BJ, Girouard SD et al (2014) Stem cells and targeted approaches to melanoma cure. Mol Aspects Med 39:33–49

    CAS  PubMed  Google Scholar 

  67. Tang L, Bergevoet SM, Gilissen C et al (2010) Hematopoietic stem cells exhibit a specific ABC transporter gene expression profile clearly distinct from other stem cells. BMC Pharmacol 10:12

    PubMed  PubMed Central  Google Scholar 

  68. Han L, Shi S, Gong T et al (2013) Cancer stem cells: therapeutic implications and perspectives in cancer therapy. Acta Pharm Sin B 3:65–75

    Google Scholar 

  69. Zheng L, Pan J (2018) The anti-malarial drug artesunate blocks wnt/β-catenin pathway and inhibits growth, migration and invasion of uveal melanoma cells. Curr Cancer Drug Targ 18:988–998

    CAS  Google Scholar 

  70. Kim IG, Kim SY, Choi SI et al (2014) Fibulin-3-mediated inhibition of epithelial-to-mesenchymal transition and self-renewal of ALDH+ lung cancer stem cells through IGF1R signaling. Oncogene 33:3908–3917

    CAS  PubMed  Google Scholar 

  71. Jin N, Zhu X, Cheng F et al (2018) Disulfiram/copper targets stem cell-like ALDH+ population of multiple myeloma by inhibition of ALDH1A1 and Hedgehog pathway. J Cell Biochem 119:6882–6893

    CAS  PubMed  Google Scholar 

  72. Yue L, Huang ZM, Fong S et al (2015) Targeting ALDH1 to decrease tumorigenicity, growth and metastasis of human melanoma. Melanoma Res 25:138–148

    CAS  PubMed  Google Scholar 

  73. Ma YW, Liu YZ, Pan JX (2016) Verteporfin induces apoptosis and eliminates cancer stem-like cells in uveal melanoma in the absence of light activation. Am J Cancer Res 6:2816–2830

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Zhu Y, Ye T, Yu X et al (2016) Nifuroxazide exerts potent anti-tumor and anti-metastasis activity in melanoma. Sci Rep 6:20253

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Sarvi S, Crispin R, Lu Y et al (2018) ALDH1 bio-activates nifuroxazide to eradicate ALDHHigh melanoma-initiating cells. Cell Chem Biol 25:1456-1469.e6

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Petrachi T, Romagnani A, Albini A et al (2017) Therapeutic potential of the metabolic modulator phenformin in targeting the stem cell compartment in melanoma. Oncotarget 8:6914–6928

    PubMed  Google Scholar 

  77. Zhang B, Zhang J, Pan J (2017) Pristimerin effectively inhibits the malignant phenotypes of uveal melanoma cells by targeting NF-κB pathway. Int J Oncol 51:887–898

    CAS  PubMed  Google Scholar 

  78. Liu S, Gao X, Zhang L et al (2018) A novel anti-cancer stem cells compound optimized from the natural symplostatin 4 scaffold inhibits Wnt/β-catenin signaling pathway. Eur J Med Chem 156:21–42

    CAS  PubMed  Google Scholar 

  79. Li Q, Lu L, Tao H et al (2014) Generation of a novel dendritic-cell vaccine using melanoma and squamous cancer stem cells. J Vis Exp 83:e50561

    Google Scholar 

  80. Ning N, Pan Q, Zheng F et al (2012) Cancer stem cell vaccination confers significant antitumor immunity. Cancer Res 72:1853–1864

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Badrinath N, Yoo SY (2019) Recent advances in cancer stem cell-targeted immunotherapy. Cancers 11:310

    CAS  PubMed Central  Google Scholar 

  82. Dashti A, Ebrahimi M, Hadjati J et al (2016) Dendritic cell based immunotherapy using tumor stem cells mediates potent antitumor immune responses. Cancer Lett 374:175–185

    CAS  PubMed  Google Scholar 

  83. Xu Q, Liu G, Yuan X et al (2009) Antigen-specific T-cell response from dendritic cell vaccination using cancer stem-like cell-associated antigens. Stem Cells 27:1734–1740

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Lu Lin. Tao H, Chang AE et al (2015) Cancer stem cell vaccine inhibits metastases of primary tumors and induces humoral immune responses against cancer stem cells. Oncoimmunology 4:e990767

    Google Scholar 

  85. Hu Y, Lu L, Xia Y et al (2016) Therapeutic efficacy of cancer stem cell vaccines in the adjuvant setting. Cancer Res 76:4661–4672

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Duraiswamy J. Kaluza KM. Freeman GJ et al ( (2013) Dual blockade of PD-1 and CTLA-4 combined with tumor vaccine effectively restores T-cell rejection function in tumors. Cancer Res 73:3591–3603

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Lee Y, Shin JH, Longmire M et al (2016) Cd44+ cells in head and neck squamous cell carcinoma suppress T-cell-mediated immunity by selective constitutive and inducible expression of PD-L1. Clin Cancer Res 22:3571–3581

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Tamai K, Nakamura M, Mizuma M et al (2014) Suppressive expression of CD274 increases tumorigenesis and cancer stem cell phenotypes in cholangiocarcinoma. Cancer Sci 105:667–674

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Zheng F, Dang J, Zha H et al (2017) PD-L1 promotes self-renewal and tumorigenicity of malignant melanoma initiating cells. Biomed Res Int 2017:1293201

    PubMed  PubMed Central  Google Scholar 

  90. Hao C, Tian J, Liu H et al (2017) Efficacy and safety of anti-PD-1 and anti-PD-1 combined with anti-CTLA-4 immunotherapy to advanced melanoma: A systematic review and meta-analysis of randomized controlled trials. Medicine 96:e7325

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Zhang B, Dang J, Ba D et al (2018) Potential function of CTLA-4 in the tumourigenic capacity of melanoma stem cells. Oncol Lett 16:6163–6170

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Zheng F, Dang J, Zhang H et al (2018) Cancer stem cell vaccination with PD-L1 and CTLA-4 blockades enhances the eradication of melanoma stem cells in a mouse tumor model. J Immunother 41:361–368

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Gammaitoni L, Giraudo L, Leuci V et al (2013) Effective activity of cytokine-induced killer cells against autologous metastatic melanoma including cells with stemness features. Clin Cancer Res 19:4347–4358

    CAS  PubMed  Google Scholar 

  94. Hontscha C, Borck Y, Zhou H et al (2011) Clinical trials on CIK cells: first report of the international registry on CIK cells (IRCC). J Cancer Res Clin Oncol 137:305–310

    CAS  PubMed  Google Scholar 

  95. Volonte A, Tomaso TD, Spinelli M et al (2014) Cancer-initiating cells from colorectal cancer patients escape from T cell-mediated immunosurveillance in vitro through membrane-bound IL-4. J Immunol 192:523–532

    CAS  PubMed  Google Scholar 

  96. Schatton T, Frank MH (2009) Antitumor immunity and cancer stem cells. Ann N Y Acad of Sci 1176:154–169

    CAS  Google Scholar 

  97. Mukherjee N, Almeida A, Partyka KA et al (2016) Combining a GSI and BCL-2 inhibitor to overcome melanoma's resistance to current treatments. Oncotarget 7:84594–84607

    PubMed  PubMed Central  Google Scholar 

  98. Thomas LW, Lam C, Edwards SW (2010) Mcl-1; the molecular regulation of protein function. FEBS Lett 584:2981–2989

    CAS  PubMed  Google Scholar 

  99. Mukherjee N, Lu Y, Alemeida A et al (2017) Use of a MCL-1 inhibitor alone to de-bulk melanoma and in combination to kill melanoma initiating cells. Oncotarget 8:46801–46817

    PubMed  Google Scholar 

  100. Santini R, Vinci MC, Pandolfi S et al (2012) HEDGEHOG-GLI signaling drives self-renewal and tumorigenicity of human melanoma-initiating cells. Stem Cells 30:1808–1818

    CAS  PubMed  Google Scholar 

  101. Santini R, Pietrobono S, Pandolfi S et al (2014) SOX2 regulates self-renewal and tumorigenicity of human melanoma-initiating cells. Oncogene 33:4697–4708

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Miyabayashi T, Kagamu H, Koshio J et al (2011) Vaccination with CD133+ melanoma induces specific Th17 and Th1 cell-mediated antitumor reactivity against parental tumor. Cancer Immunol Immunother 60:1597–1608

    PubMed  Google Scholar 

  103. Koshio J, Kagamu H, Nozaki K et al (2013) DEAD/H (Asp-Glu-Ala-Asp/His) box polipeptide 3, X-linked I san immunogenic target of cancer stem cells. Cancer Immunol Immunother 62:1619–1628

    CAS  PubMed  Google Scholar 

  104. Nozaki K, Kagamu H, Shoji S et al (2014) DDX3X induces primary EGFR-TKI resistance based on intratumor heterogeneity in lung cancer cells harboring EGFR-activating mutations. PloS ONE 9:e111019

    PubMed  PubMed Central  Google Scholar 

  105. Shen H, Shi S, Zhang Z et al (2015) Coating solid lipid nanoparticles with hyaluronic acid enhances antitumor activity against melanoma stem-like cells. Theranostics 5:755–771

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Wang Y, Liu M, Jin Y et al (2017) In vitro and in vivo anti-uveal melanoma activity of JSL-1, a novel HDAC inhibitor. Cancer Lett 400:47–60

    CAS  PubMed  Google Scholar 

  107. Bazewicz CG, Dinavahi SS, Schell TD et al (2019) Aldehyde dehydrogenase in regulatory T cell development, immunity and cancer. Immunology 156:47–55

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are indebted to all individuals who participated in or helped with this research project.

Author information

Authors and Affiliations

Authors

Contributions

SZ contributed to study conception, literature search and original draft preparation. ZY contributed to study conception and paper revision. FQ contributed to supervision. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Fazhi Qi.

Ethics declarations

Conflict of interest

The authors declares that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Yang, Z. & Qi, F. Aldehyde dehydrogenase-positive melanoma stem cells in tumorigenesis, drug resistance and anti-neoplastic immunotherapy. Mol Biol Rep 47, 1435–1443 (2020). https://doi.org/10.1007/s11033-019-05227-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-019-05227-2

Keywords

Navigation