Skip to main content

Cancer Stem Cells in Melanoma

  • Chapter
  • First Online:
Stem Cells in Cancer: Should We Believe or Not?

Abstract

The Cancer Stem Cells (CSC) are a subpopulation of tumoral cells characterized by the ability to self-renew and to establish tumours upon transplantation, to remain quiescent for long time and to have an innate resistance to chemotherapy and radiotherapy. These features suggest that they are responsible for relapse and metastasis. In melanoma, subsets of tumoral cells with these characteristics have been identified using CSC markers such as ALDH1, CD133, ABCB5. Wnt, Notch and Hegdohog are signaling pathways involved in the biology of CSC, which are highly conserved through evolution. Although the available evidence is limited, it seems to be equally important for melanoma stem cells. Many studies have associated high levels of CSC biomarkers expression with adverse prognosis of melanoma. Knowledge of the CSC biomarkers and its signaling pathways has opened research pathway for the development of new therapies targeted to CSC. The anti-CD20 antibody, Rituximab, and immunotherapy with dendritic cells immunized against antigens of the CSC, have documented the first positive results of efficacy in melanoma. The current evidence on their CSC biomarkers, major molecular pathways involved in its biology, prognostic value and potential utility as a therapeutic target will be reviewed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Siegel R et al (2012) Cancer statistics 2012. Cancer J Clin 62:10–29

    Article  Google Scholar 

  2. Siegel R, Ma J, Zou Z et al (2014) Cancer statistics. CA Cancer J Clin 64(1):9–29

    Google Scholar 

  3. Chapman PB et al (1999) Phase III multicenter randomized trial o the Dartmouth regimen versus dacarbazine in patients with metastatic melanoma. J Clin Oncol 17:2745–2751

    PubMed  CAS  Google Scholar 

  4. Hodi FS et al (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363:711–723

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  5. Robert C et al (2011) Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med 364:2517–2526

    Article  PubMed  CAS  Google Scholar 

  6. Chapman PB et al (2011) Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med 364:2507–2516

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  7. Hauschild A et al (2012) Dabrafenib in BRAF-mutated metastatic melanoma: a multicenter, open-label, phase 3 randomised controlled trials. Lancet 380(9839):358–365

    Article  PubMed  CAS  Google Scholar 

  8. La Porta CA et al (2013) Human breast and melanoma cancer stem cells biomarkers. Cancer Lett 338:69–73

    Article  PubMed  CAS  Google Scholar 

  9. Sampieri K et al (2012) Cancer stem cells and metastasis. Semin Cancer Biol 22(3):187–193

    Article  PubMed  CAS  Google Scholar 

  10. Sztiller-Sikorska M et al (2012) Sphere formation and self-renewal capacity of melanoma cells is affected by the microenvironment. Melanoma Res 22(3):21–24

    Article  Google Scholar 

  11. Dou J et al (2007) Isolation and identification of cancer stem cell-like cells from murine melanoma cell lines. Cell Mol Immunol 4:467–472

    PubMed  Google Scholar 

  12. Hoek KS et al (2010) Cancer stem cells versus phenotype-switching in melanoma. Pigment Cell Melanoma Res 23(6):746–759

    Article  PubMed  CAS  Google Scholar 

  13. Schmidt P et al (2011) The beating heart of melanomas: a minor subset of cancer cells sustains tumor growth. Oncotarget 2:313–320

    PubMed Central  PubMed  Google Scholar 

  14. Mani SA et al (2008) The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133:704–715

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  15. Monzani E et al (2007) Melanoma contains CD133 and ABCG2 positive cells with enhanced tumorigenic potential. Eur J Cancer 43:935–946

    Article  PubMed  CAS  Google Scholar 

  16. Sharma BK et al (2012) Clonal dominance of CD133+ subset population as risk factor in tumor progression and disease recurrence of human cutaneous melanoma. Int J Oncol 41(5):1570–1576

    PubMed Central  PubMed  Google Scholar 

  17. Piras F et al (2010) The stem cell marker nestin predicts poor prognosis in human melanoma. Oncol Rep 23(1):17–24

    PubMed  Google Scholar 

  18. Klein WM et al (2007) Increased expression of stem cell markers in malignant melanoma. Mod Pathol 20:102–107

    Article  PubMed  CAS  Google Scholar 

  19. Frank NY et al (2005) ABCB5 mediated doxorubicin transport and chemoresistance in human malignant melanoma. Cancer Res 65:4320–4333

    Article  PubMed  CAS  Google Scholar 

  20. Fang D et al (2005) A tumorigenic subpopulation with stem cell properties in melanomas. Cancer Res 65:9328–9337

    Article  PubMed  CAS  Google Scholar 

  21. Schatton T et al (2008) Identification of cells initiating human melanomas. Nature 451:345–349

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  22. Quintana E et al (2008) Efficient tumour formation by single human melanoma cells. Nature 456:593–598

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  23. Quintana E et al (2010) Phenotypic heterogeneity among tumorigenic melanoma cells from patients that is reversible and not hierarchically organized. Cancer Cell 18:510–523

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  24. Shakhova O et al (2013) Testing the cancer stem cell hypothesis in melanoma: the clinics will tell. Cancer Lett 338:74–81

    Article  PubMed  CAS  Google Scholar 

  25. Folberg R et al (2000) Vasculogenic mimicry and tumor angiogenesis. Am J Pathol 156:361–381

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  26. Lai CY et al (2012) CD133+ melanoma subpopulations contribute to perivascular niche morphogenesis and tumorigenicity through vasculogenic mimicry. Cancer Res 72:5111–5118

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  27. Frank NY et al (2003) Regulation of progenitor cell fusion by ABCB5 P-glycoprotein, a novel human-binding cassette transporter. J Biol Chem 278:47156–47165

    Article  PubMed  CAS  Google Scholar 

  28. Ma J et al (2010) Isolation of tumorigenic circulating melanoma cells. Biochem Biophys Res Commun 402:711–717

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  29. Setia N et al (2012) Profiling of ABC transporters ABCB5, ABCF2 and nestin-positive stem cells in nevi, in situ and invasive melanoma. Mod Pathol 25:1169–1175

    Article  PubMed  CAS  Google Scholar 

  30. Tedder TF et al (1998) Isolation and structure of a cDNA encoding the B1 (CD20) cell-surface antigen of human B lymphocytes. Proc Natl Acad Sci U S A 85(1):208–212

    Article  Google Scholar 

  31. Baroffio A et al (1988) Clone-forming ability and differentiation potential of migratory neural crest cells. Proc Natl Acad Sci U S A 85:5325–5329

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  32. Micera A et al (2007) Nerve growth factor and tissue repair remodeling: trk A (NGFR) and p75 (NTR), two receptors one fate. Cytokine Growth Factor Rev 18:245–256

    Article  PubMed  CAS  Google Scholar 

  33. Rogers ML et al (2008) CD 271 (P75 neurotrophin receptor). J Biol Regul Homeost Agents 22:1–6

    PubMed  CAS  Google Scholar 

  34. Boiko AD et al (2010) Human melanoma-initiating cells express neural crest nerve growth factor receptor CD271. Nature 466:133–137

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  35. Civenni G et al (2011) Human CD 271-positive melanoma stem cells associated with metastasis establish tumor heterogeneity and long-term growth. Cancer Res 71:3098–3109

    Article  PubMed  CAS  Google Scholar 

  36. Valyi-Nagy K et al (2012) Stem cell marker CD271 is expressed by vasculogenic mimicry-forming uveal melanoma cells in three-dimensional cultures. Mol Vis 18:588–592

    PubMed Central  PubMed  CAS  Google Scholar 

  37. Chute JP et al (2003) Inhibition of alde-hyde dehydrogenase and retinoid signaling induces the expansion of human hematopoietic stem cells. Proc Natl Acad Sci U S A 103:11707–11712

    Article  CAS  Google Scholar 

  38. Ginestier C et al (2007) ALDH1 is a marker of normal and malignant human mammary stem cells B and a predictor of poor clinical outcome. Cell Stem Cell 1:555–567

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  39. Huang EH et al (2009) Aldehyde dehydrogenase 1 is marker for normal and malignant human colonic stem cells (SC) and tracks SC overpopulation during colon tumorigenesis. Cancer Res 69:3382–3389

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  40. Van den Hoogen C et al (2010) High aldehyde dehydrogenase activity identifies tumor-initiating and metastases-initiating cells in human prostate cancer. Cancer Res 70:5163–5173

    Article  PubMed  CAS  Google Scholar 

  41. Boonyaratanakornkit JB et al (2010) Selection of tumorigenic melanoma cells using ALDH. J Invest Dermatol 130:2799–2808

    Article  PubMed  CAS  Google Scholar 

  42. Santini R et al (2012) Hedgehog-GLI signaling drives self-renewal and tumorigenicity of human melanoma-initiating cells. Stem Cells 30:1808–1818

    Article  PubMed  CAS  Google Scholar 

  43. Wiese C et al (2004) Nestin expression – a property of multilineage progenitor cells? Cell Mol Life Sci 61:2510–2522

    Article  PubMed  CAS  Google Scholar 

  44. Miyagi S et al (2006) The Sox 2 regulatory region 2 functions as a neural stem cell-specific enhancer in the telencephalon. J Biol Chem 281:13374–13381

    Article  PubMed  CAS  Google Scholar 

  45. Grichnik JM et al (2006) Melanoma, a tumor based on a mutant stem cell? J Invest Dermatol 126:142–153

    Article  PubMed  CAS  Google Scholar 

  46. Florenes VA et al (1994) Expression of the neuroectodermal intermediate filament nestin in human melanomas. Cancer Res 54:354–356

    PubMed  CAS  Google Scholar 

  47. Brychtova S et al (2007) Nestin expression in cutaneous melanomas and melanocytic nevi. J Cutan Pathol 34:370–375

    Article  PubMed  Google Scholar 

  48. Fusi A et al (2010) Expression of the stem cell marker nestin in peripheral blood of patients with melanoma. Br J Dermatol 163:107–114

    PubMed  CAS  Google Scholar 

  49. Castillo SD et al (2012) The SOX family of genes in cancer development: biological relevance and opportunities for treatment. Expert Opin Ther Targets 16(9):903–919

    Article  PubMed  CAS  Google Scholar 

  50. Shakhova O et al (2012) SOX 10 promotes the formation and maintenance of giant congenital naevi and melanoma. Nat Cell Biol 14(8):882–890

    Article  PubMed  CAS  Google Scholar 

  51. Bakos RM et al (2010) Nestin and SOX 9 and SOX 10 transcription factors are coexpressed in melanoma. Exp Dermatol 19:e89–e94

    Article  PubMed  Google Scholar 

  52. Sommer L (2011) Generation of melanocytes from neural crest cells. Pigment Cell Melanoma Res 24:411–421

    Article  PubMed  CAS  Google Scholar 

  53. Cook AL et al (2005) Co-expression of SOX 9 and SOX 10 during melanocytic differentiation in vitro. Exp Cell Res 308:222–235

    Article  PubMed  CAS  Google Scholar 

  54. Flamminger A et al (2009) SOX 9 and SOX 10 but not BRN2 are required for nestin expression in human melanoma cells. J Invest Dermatol 129:945–953

    Article  CAS  Google Scholar 

  55. Laga CA et al (2011) SOX2 and nestin expression in human melanoma: an inmunohistochemical and experimental study. Exp Dermatol 20(4):339–345

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  56. Katoh Y et al (2006) FGF signaling inhibitor, SPRY4, is evolutionarily conserved target of WNT signaling pathway in progenitor cells. Int J Mol Med 17:529–532

    PubMed  CAS  Google Scholar 

  57. Nusse R et al (2008) Wnt signaling and stem cell control. Cold Spring Harb Symp Quant Biol 73:59–66

    Article  PubMed  CAS  Google Scholar 

  58. Vermeulen L et al (2010) Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nat Cell Biol 12:468–476

    Article  PubMed  CAS  Google Scholar 

  59. Malanchi I et al (2008) Cutaneous cancer stem cell maintenance is dependent on beta-catenin signaling. Nature 452:650–653

    Article  PubMed  CAS  Google Scholar 

  60. Watt FM et al (2008) Role of beta-catenin in epidermal stem cell expansion, lineage selection, and cancer. Cold Spring Harb Symp Quant Biol 73:503–512

    Article  PubMed  CAS  Google Scholar 

  61. Zeng YA et al (2010) Wnt proteins are self-renewal factors form mammary stem cells and promote their long-term expansion in culture. Cell Stem Cell 6:568–577

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  62. Muller-Tidow C et al (2004) Translocation products in acute myeloid leukemia activate the Wnt signaling pathway in hematopoietic cells. Mol Cell Biol 24:2890–2904

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  63. Hoffmeyer K et al (2012) Wnt/B-Catenin signaling regulates telomerase in stem cells and cancer cells. Science 336:1549

    Article  PubMed  CAS  Google Scholar 

  64. Clement V et al (2007) HEDGEHOG-GLI1 signaling regulates human glioma growth, cancer stem cell self-renewal, and tumorigenicity. Curr Biol 17:165–172

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  65. Bar EE et al (2007) Cyclopamine-mediated hedgehog pathway inhibition depletes stem-like cancer cells in glioblastoma. Stem Cells 25:2524–2533

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  66. Dierks C et al (2008) Expansion of Bcr-Abl-positive leukemic stem cells is dependent on Hedgehog pathway activation. Cancer Cell 14:238–249

    Article  PubMed  CAS  Google Scholar 

  67. Zhao C et al (2009) Hedgehog signalling is essential for maintenance of cancer stem cells in myeloid leukaemia. Nature 458:776–779

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  68. Feldmann G et al (2007) Blockade of hedgehog signaling inhibits pancreatic cancer invasion and metastases: a new paradigm for combination therapy in solid cancers. Cancer Res 67:2187–2196

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  69. Peacock CD et al (2007) Hedgehog signaling maintains a tumor stem cell compartment in multiple myeloma. Proc Natl Acad Sci U S A 104:4048–4053

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  70. Liu S et al (2006) Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Res 66:6063–6071

    Article  PubMed  CAS  Google Scholar 

  71. Kim J et al (2009) Gli2 trafficking links Hedgehog-dependent activation of Smoothened in the primary cilium to transcriptional activation in the nucleus. Proc Natl Acad Sci U S A 106:21666–21671

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  72. Ji Z et al (2007) Oncogenic KRAS activates Hedgehog signaling pathway in pancreatic cancer cells. J Biol Chem 282:14048–14055

    Article  PubMed  CAS  Google Scholar 

  73. Pandolfi S et al (2013) WIP1 phosphatase modulates the Hedgehog signaling by enhancing GLI1 function. Oncogene 32:4737–4747

    Article  PubMed  CAS  Google Scholar 

  74. Dontu G et al (2004) Role of Notch signaling in cell-fate determination of human mammary stem/progenitor cells. Breast Cancer Res 6:R605–R6015

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  75. Androutsellis-Theotolis A et al (2006) Notch signaling regulates stem cell numbers in vitro and in vivo. Nature 442:823–826

    Article  CAS  Google Scholar 

  76. Kakarala M et al (2007) Cancer stem cells: implications for cancer treatment and prevention. Cancer J 13:271–275

    Article  PubMed  CAS  Google Scholar 

  77. Korkaya H et al (2007) Selective targeting of cancer stem cells: a new concept in cancer therapeutics. BioDrugs 21:299–310

    Article  PubMed  CAS  Google Scholar 

  78. Farnie G et al (2007) Mammary stem cells and breast cancer–role of Notch signalling. Stem Cell Rev 3:169–175

    Article  PubMed  CAS  Google Scholar 

  79. Farnie G et al (2007) Novel cell culture technique for primary ductal carcinoma in situ: role of Notch and epidermal growth factor receptor signaling pathways. J Natl Cancer Inst 99:616–627

    Article  PubMed  CAS  Google Scholar 

  80. Sansone P et al (2007) p66Shc/Notch-3 interplay controls self-renewal and hypoxia survival in human stem/progenitor cells of the mammary gland expanded in vitro as mammospheres. Stem Cells 25:807–815

    Article  PubMed  CAS  Google Scholar 

  81. Fan X et al (2006) Notch pathway inhibition depletes stem-like cells and blocks engraftment in embryonal brain tumors. Cancer Res 66:7445–7452

    Article  PubMed  CAS  Google Scholar 

  82. Fan X et al (2010) Notch pathway blockade depletes CD133-positive glioblastoma cells and inhibits growth of tumor neurospheres and xenografts. Stem Cells 28:5–16

    PubMed Central  PubMed  CAS  Google Scholar 

  83. Wang J et al (2010) Notch promotes radioresistance of glioma stem cells. Stem Cells 28:17–28

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  84. Pinnix CC et al (2007) The many faces of Notch signaling in skin-derived cells. Pigment Cell Res 20(6):458–465

    Article  PubMed  CAS  Google Scholar 

  85. Okuyama R et al (2008) Notch signaling: its role in epidermal homeostasis and in the pathogenesis of skin diseases. J Dermatol Sci 49(3):187–194

    Article  PubMed  CAS  Google Scholar 

  86. Panelos J et al (2009) Emerging role of Notch signaling in epidermal differentiation and skin cancer. Cancer Biol Ther 8(21):1986–1993. Epub 2009 Nov 26

    Article  PubMed  CAS  Google Scholar 

  87. Schouwey K et al (2008) The Notch pathway: hair graying and pigment cell homeostasis. Histol Histopathol 23(5):609–619

    PubMed  CAS  Google Scholar 

  88. Moriyama M et al (2006) Notch signaling via Hes1 transcription factor maintains survival of melanoblasts and melanocyte stem cells. J Cell Biol 173:333–339

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  89. Massi D et al (2006) Evidence for differential expression of Notch receptors and their ligands in melanocytic nevi and cutaneous malignant melanoma. Mod Pathol 19:246–254

    Article  PubMed  CAS  Google Scholar 

  90. Balint K et al (2005) Activation of Notch1 signaling is required for beta-catenin-mediated human primary melanoma progression. J Clin Invest 115:3166–3176

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  91. Qin JZ et al (2004) p53-independent NOXA induction overcomes apoptotic resistance of malignant melanomas. Mol Cancer Ther 3:895–902

    PubMed  CAS  Google Scholar 

  92. Al Dhaybi R et al (2010) Expression of CD133+ cancer stem cells in childhood malignant melanoma and its correlation with metastasis. Mod Pathol 23:376–380

    Article  PubMed  CAS  Google Scholar 

  93. Tanake K et al (2010) Prognostic significance of the hair follicle stem cell marker nestin in patients with malignant melanoma. Eur J Dermatol 20(3):283–288

    Google Scholar 

  94. Fusi A et al (2011) Expression of the stem cell markers nestin and CD133 on circulating melanoma cells. J Invest Dermatol 131(2):487–494

    Article  PubMed  CAS  Google Scholar 

  95. Chartrain M et al (2012) Melanoma chemotherapy leads to the selection of ABCB5-expressing cells. PLoS One 7(5):e36762

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  96. Reid AL et al (2013) Markers of circulating tumour cells in the peripheral blood of patients with melanoma correlate with disease recurrence and progression. Br J Dermatol 168(1):85–92

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  97. Leung C et al (2004) Bmi1 is essential for cerebellar development and is overexpressed in human medulloblastomas. Nature 428:337–341

    Article  PubMed  CAS  Google Scholar 

  98. Molofsky AV et al (2003) Bmi-1 dependence distinguishes neural stem cell self-renewal from progenitor proliferation. Nature 425:962–967

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  99. Mihic-Probst D et al (2007) Consistent expression of the stem cell renewal factor BMI-1 in primary and metastatic melanoma. Int J Cancer 121(8):1764–1770

    Article  PubMed  CAS  Google Scholar 

  100. Yapeng H, Liwu F (2012) Targeting cancer stem cells: a new therapy to cure cancer patients. Am J Cancer Res 2(3):340–356

    Google Scholar 

  101. Rappa G, Fodstad O et al (2008) The stem cell-associated antigen CD133(Protamine-1) is a molecular therapeutic target for metastatic melanoma. Stem Cells 26:3008–3017

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  102. Luo Y, Dallaglio K et al (2012) ALDH1A isozymes are markers of human melanoma stem cells and potential therapeutic targets. Stem Cells 30:2100–2113

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  103. Takahashi-Yanaga F, Kahn M (2010) Targeting Wnt signaling: can we safely eradicate cancer stem cells? Clin Cancer Res 16:3153–3162

    Article  PubMed  CAS  Google Scholar 

  104. Yin L, Velazquez OC et al (2010) Notch signaling: emerging molecular targets for cancer therapy. Biochem Pharmacol 80:690–701

    Article  PubMed  CAS  Google Scholar 

  105. Guo S, Liu M et al (1815) Role of Notch and its oncogenic signaling crosstalk in breast cancer. Biochim Biophys Acta 2011:197–213

    Google Scholar 

  106. Hovinga KE, Shimizu F et al (2010) Inhibition of notch signaling in glioblastoma targets cancer stem cells via an endothelial cell intermediate. Stem Cells 28:1019–1029

    Article  PubMed  CAS  Google Scholar 

  107. Xia L, Wurmbach E et al (2006) Upregulation of Bfl-1/A1 in leukemia cells undergoing differentiation by all-trans retinoic acid treatment attenuates chemotherapeutic agent-induced apoptosis. Leukemia 20:1009–1016

    Article  PubMed  CAS  Google Scholar 

  108. Ma H, Nguyen C et al (2005) Differential roles for the coactivators CBP and p300 on TCF/beta-catenin-mediated survivin gene expression. Oncogene 24:3619–3631

    Article  PubMed  CAS  Google Scholar 

  109. Wang Y (2011) Effects of salinomycin on cancer stem cell in human lung adenocarcinoma A549 cells. Med Chem 7:106–111

    Article  PubMed  CAS  Google Scholar 

  110. Fong D, Yeh A et al (2010) Curcumin inhibits the side population (SP) phenotype of the rat C6 glioma cell line: towards targeting of cancer stem cells with phytomedicals. Cancer Lett 296:65–72

    Article  CAS  Google Scholar 

  111. Park CH, Hahm ER et al (2005) The inhibitory mechanism of curcumin and its derivative against beta-catenin/Tcf signaling. FEBS Lett 579:2965–2971

    Article  PubMed  CAS  Google Scholar 

  112. Ottinger S, Kloppel A et al (2012) Targeting on pancreatic and prostate cancer stem cell characteristics by Crambe marine sponge extract. Int J Cancer 130:1671–1681

    Article  PubMed  CAS  Google Scholar 

  113. Rausch V, Liu L et al (2010) Synergistic activity of sorafenib and sulforaphane abolishes pancreatic cancer stem cell characteristics. Cancer Res 70:5004–5013

    Article  PubMed  CAS  Google Scholar 

  114. Shen G, Khor TO et al (2007) Chemoprevention of familiar adenomatous polyposis by natural dietary compounds sulforaphane and dibenzoylmethane alone and in combination in ApcMin/+mouse. Cancer Res 67:9937–9944

    Article  PubMed  CAS  Google Scholar 

  115. Choi S, Lew KI et al (2007) L-Sulforaphane-induced cell death in human prostate cancer cells is regulated by inhibitor of apoptosis family proteins and Apaf-1. Carcinogenesis 28:151–162

    Article  PubMed  CAS  Google Scholar 

  116. Korkaya H, Paulson A (2009) Regulation of mammary stem/progenitor cells by PTEN/Akt/beta-catenin signaling. PLoS Biol 7:e1000121

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  117. Lotem M, Peretz T et al (2011) Two phase I studies of PTI-188, a radiolabeled murine anti-melanin antibody in patients with metastatic melanoma (MM). J Clin Oncol 29(Suppl; abstr. 8555)

    Google Scholar 

  118. Jandl T, Revskaya E, Jiang Z et al (2013) Melanoma stem cells in experimental melanoma are killed by radioimmunotherapy. Nucl Med Biol 40(2):177–181

    Google Scholar 

  119. Leal JA, Lleonart ME (2013) MicroRNAs and cancer stem cells: therapeutic approaches and future perspectives. Cancer Lett 338:174–183

    Article  PubMed  CAS  Google Scholar 

  120. Costa FF, Seftor EA et al (2009) Epigenetically reprogramming metastatic tumor cells with an embryonic microenvironment. Epigenomics 1:387–398

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  121. Max S, Schmidt P et al (2012) Regression of metastatic melanoma by targeting cancer stem cells. Oncotarget 3:22–30

    Google Scholar 

  122. Dillman RO, DePriest C et al (2007) Patients-specific vaccines derived from autologous tumor cell lines as active specific immunotherapy: results of exploratory phase I/II trials in patients with metastatic melanoma. Cancer Biother Radiopharm 22:309–321

    Article  PubMed  CAS  Google Scholar 

  123. Dillman RO, Selvan SR et al (2009) Phase II trial of dendritic cells loaded with antigens from self-renewing, proliferation autologous tumor cells as patient-specific antitumor vaccines in patients with metastatic melanoma: final report. Cancer Biother Radiopharm 24:311–319

    Article  PubMed  CAS  Google Scholar 

  124. Dillman RO, Selvan SR et al (2006) Patients-specific dendritic cells vaccines for metastatic melanoma. N Engl J Med 355:1179–1181

    Article  PubMed  CAS  Google Scholar 

  125. Dillman RO, Cornforth AN et al (2012) Tumor stem cell antigens as consolidative active specific immunotherapy: a randomized Phase II trial of dendritic cells versus tumor cells in patient with metastatic melanoma. J Immunother 35(8):641–649

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ainara Soria .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Soria, A., del Toro, J.M., Fuentes, R., Cortés, A. (2014). Cancer Stem Cells in Melanoma. In: Grande, E., Antón Aparicio, L. (eds) Stem Cells in Cancer: Should We Believe or Not?. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8754-3_10

Download citation

Publish with us

Policies and ethics