Skip to main content

Cancer Stem Cell Challenges in Melanoma Characterization and Treatment

  • Chapter
  • First Online:
Cancer Stem Cell Resistance to Targeted Therapy

Part of the book series: Resistance to Targeted Anti-Cancer Therapeutics ((RTACT,volume 19))

Abstract

Melanoma is the most aggressive and lethal form of skin cancer. Many challenges remain despite great progress achieved with recently developed targeted therapies. Melanoma genetic and functional heterogeneity is the major cause of therapy failure, with different subpopulations that can be spared by treatments and which then support tumor regrowth. Many studies have suggested different approaches to isolate and characterize cancer stem cells (CSCs) from melanoma, also known as melanoma-initiating cells (MICs). MICs isolated by different groups can have different phenotypes, and MICs can also show plasticity, switching between MIC and more mature melanoma cell features, further underlying the complexity of this cancer. This chapter describes our current definition of MICs and their identification, with particular attention to their relevance in the therapy resistance. Moreover, we will discuss some of the controversial issues in the field and the possible therapeutic approaches to successfully target melanoma CSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABCB1:

ATP-binding cassette subfamily B member 1

ABCB5:

ATP-binding cassette subfamily B member 5

ABCG2:

ATP-binding cassette subfamily G member 2

ALDH1:

Aldehyde dehydrogenase 1

BRAF:

V-raf murine sarcoma viral oncogene homolog B1

BRAFi:

V-raf murine sarcoma viral oncogene homolog B1 inhibitor

BRAFV600E:

Amino acid substitution at position 600 in BRAF, from a valine (V) to a glutamic acid (E)

CSC:

Cancer stem cell

CD:

Cluster differentiation

CIK:

Cytokine-induced killer

CTLA-4:

Cytotoxic T-lymphocyte antigen-4

CXCL16:

C-X-C motif chemokine ligand 16

CXCR4:

Stromal cell-derived factor-1

CXCR6:

C-X-C motif chemokine receptor 6

EMT:

Epithelial-mesenchymal transition

FDA:

Food and drug administration

JARID1B:

Histone demethylase Jumonji/Arid1b

KIT:

C-Kit tyrosine kinase receptor

IL-6:

Interleukin 6

IL-8:

Interleukin 8

IL-10:

Interleukin 10

MDR1:

Multidrug-resistance gene product 1

MDSC:

Myeloid-derived suppressor cells

MEK:

Mitogen-activated protein kinase kinase

MHC:

Major histocompatibility complex

MIC:

Melanoma-initiating cell

MITF:

Microphthalmia-associated transcription factor

NF-κB:

Nuclear factor kappa b

NGFR:

Nerve growth factor receptor

Notch:

Translocation-associated Notch protein

PD-1:

Programmed cell death-1

RGP:

Radial growth phase

SP:

Side population

TME:

Tumor microenvironment

Treg:

T regulatory cell

UV:

Ultraviolet

VEGFR1:

Vascular endothelial growth factor receptor 1

VGP:

Vertical growth phase

WNT:

Wingless-type mmtv integration site family

References

  1. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136:E359–86. https://doi.org/10.1002/ijc.29210.

    Article  CAS  PubMed  Google Scholar 

  2. Schadendorf D, Fisher DE, Garbe C, Gershenwald JE, Grob JJ, Halpern A, Herlyn M, Marchetti MA, McArthur G, Ribas A, Roesch A, Hauschild A. Melanoma. Nat Rev Dis Primers. 2015;1:15003. https://doi.org/10.1038/nrdp.2015.3.

    Article  PubMed  Google Scholar 

  3. Harries M, Malvehy J, Lebbe C, Heron L, Amelio J, Szabo Z, Schadendorf D. Treatment patterns of advanced malignant melanoma (stage III-IV) - a review of current standards in Europe. Eur J Cancer. 2016;60:179–89. https://doi.org/10.1016/j.ejca.2016.01.011.

    Article  PubMed  Google Scholar 

  4. Costin GE, Hearing VJ. Human skin pigmentation: melanocytes modulate skin color in response to stress. FASEB J. 2007;21:976–94, doi:fj.06-6649rev [pii]

    Article  CAS  PubMed  Google Scholar 

  5. Shain AH, Bastian BC. From melanocytes to melanomas. Nat Rev Cancer. 2016;16:345–58. https://doi.org/10.1038/nrc.2016.37.

    Article  CAS  PubMed  Google Scholar 

  6. Clark WH, Jr EDE, Guerry D 4th, Epstein MN, Greene MH, Van Horn M. A study of tumor progression: the precursor lesions of superficial spreading and nodular melanoma. Hum Pathol. 1984;15:1147–65.

    Article  PubMed  Google Scholar 

  7. Elder DE. Melanoma progression. Pathology. 2016;48:147–54. https://doi.org/10.1016/j.pathol.2015.12.002.

    Article  PubMed  Google Scholar 

  8. Haass NK, Herlyn M. Normal human melanocyte homeostasis as a paradigm for understanding melanoma. J Investig Dermatol Symp Proc. 2005;10:153–63. https://doi.org/10.1111/j.1087-0024.2005.200407.x.

    Article  CAS  PubMed  Google Scholar 

  9. Shain AH, Yeh I, Kovalyshyn I, Sriharan A, Talevich E, Gagnon A, Dummer R, North J, Pincus L, Ruben B, Rickaby W, D’Arrigo C, Robson A, Bastian BC. The genetic evolution of melanoma from precursor lesions. N Engl J Med. 2015;373:1926–36. https://doi.org/10.1056/NEJMoa1502583.

    Article  CAS  PubMed  Google Scholar 

  10. Bennett DC. Genetics of melanoma progression: the rise and fall of cell senescence. Pigment Cell Melanoma Res. 2016;29:122–40. https://doi.org/10.1111/pcmr.12422.

    Article  CAS  PubMed  Google Scholar 

  11. Fang D, Nguyen TK, Leishear K, Finko R, Kulp AN, Hotz S, Van Belle PA, Xu X, Elder DE, Herlyn M. A tumorigenic subpopulation with stem cell properties in melanomas. Cancer Res. 2005;65:9328–37, doi:65/20/9328 [pii]

    Article  CAS  PubMed  Google Scholar 

  12. Monzani E, Facchetti F, Galmozzi E, Corsini E, Benetti A, Cavazzin C, Gritti A, Piccinini A, Porro D, Santinami M, Invernici G, Parati E, Alessandri G, La Porta CA. Melanoma contains CD133 and ABCG2 positive cells with enhanced tumourigenic potential. Eur J Cancer. 2007;43:935–46, doi:S0959-8049(07)00063-9 [pii]

    Article  CAS  PubMed  Google Scholar 

  13. Schatton T, Murphy GF, Frank NY, Yamaura K, Waaga-Gasser AM, Gasser M, Zhan Q, Jordan S, Duncan LM, Weishaupt C, Fuhlbrigge RC, Kupper TS, Sayegh MH, Frank MH. Identification of cells initiating human melanomas. Nature. 2008;451:345–9. https://doi.org/10.1038/nature06489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Perego M, Tortoreto M, Tragni G, Mariani L, Deho P, Carbone A, Santinami M, Patuzzo R, Mina PD, Villa A, Pratesi G, Cossa G, Perego P, Daidone MG, Alison MR, Parmiani G, Rivoltini L, Castelli C. Heterogeneous phenotype of human melanoma cells with in vitro and in vivo features of tumor-initiating cells. J Invest Dermatol. 2010;130:1877–86. https://doi.org/10.1038/jid.2010.69.

    Article  CAS  PubMed  Google Scholar 

  15. Boiko AD, Razorenova OV, van de Rijn M, Swetter SM, Johnson DL, Ly DP, Butler PD, Yang GP, Joshua B, Kaplan MJ, Longaker MT, Weissman IL. Human melanoma-initiating cells express neural crest nerve growth factor receptor CD271. Nature. 2010;466:133–7. https://doi.org/10.1038/nature09161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Boonyaratanakornkit JB, Yue L, Strachan LR, Scalapino KJ, LeBoit PE, Lu Y, Leong SP, Smith JE, Ghadially R. Selection of tumorigenic melanoma cells using ALDH. J Invest Dermatol. 2010;130:2799–808. https://doi.org/10.1038/jid.2010.237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Luo Y, Dallaglio K, Chen Y, Robinson WA, Robinson SE, McCarter MD, Wang J, Gonzalez R, Thompson DC, Norris DA, Roop DR, Vasiliou V, Fujita M. ALDH1A isozymes are markers of human melanoma stem cells and potential therapeutic targets. Stem Cells. 2012;30:2100–13. https://doi.org/10.1002/stem.1193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Roesch A, Fukunaga-Kalabis M, Schmidt EC, Zabierowski SE, Brafford PA, Vultur A, Basu D, Gimotty P, Vogt T, Herlyn M. A temporarily distinct subpopulation of slow-cycling melanoma cells is required for continuous tumor growth. Cell. 2010;141:583–94. https://doi.org/10.1016/j.cell.2010.04.020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Santini R, Pietrobono S, Pandolfi S, Montagnani V, D’Amico M, Penachioni JY, Vinci MC, Borgognoni L, Stecca B. SOX2 regulates self-renewal and tumorigenicity of human melanoma-initiating cells. Oncogene. 2014;33:4697–708. https://doi.org/10.1038/onc.2014.71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Santini R, Vinci MC, Pandolfi S, Penachioni JY, Montagnani V, Olivito B, Gattai R, Pimpinelli N, Gerlini G, Borgognoni L, Stecca B. Hedgehog-GLI signaling drives self-renewal and tumorigenicity of human melanoma-initiating cells. Stem Cells. 2012;30:1808–18. https://doi.org/10.1002/stem.1160.

    Article  CAS  PubMed  Google Scholar 

  21. Mo J, Sun B, Zhao X, Gu Q, Dong X, Liu Z, Ma Y, Zhao N, Liu Y, Chi J, Sun R. The in-vitro spheroid culture induces a more highly differentiated but tumorigenic population from melanoma cell lines. Melanoma Res. 2013;23:254–63. https://doi.org/10.1097/CMR.0b013e32836314e3.

    Article  CAS  PubMed  Google Scholar 

  22. Croteau W, Jenkins MH, Ye S, Mullins DW, Brinckerhoff CE. Differential mechanisms of tumor progression in clones from a single heterogeneous human melanoma. J Cell Physiol. 2013;228:773–80. https://doi.org/10.1002/jcp.24225.

    Article  CAS  PubMed  Google Scholar 

  23. Fomeshi MR, Ebrahimi M, Mowla SJ, Khosravani P, Firouzi J, Khayatzadeh H. Evaluation of the expressions pattern of miR-10b, 21, 200c, 373 and 520c to find the correlation between epithelial-to-mesenchymal transition and melanoma stem cell potential in isolated cancer stem cells. Cell Mol Biol Lett. 2015;20:448–65. https://doi.org/10.1515/cmble-2015-0025.

    Article  CAS  PubMed  Google Scholar 

  24. Mukherjee N, Reuland SN, Lu Y, Luo Y, Lambert K, Fujita M, Robinson WA, Robinson SE, Norris DA, Shellman YG. Combining a BCL2 inhibitor with the retinoid derivative fenretinide targets melanoma cells including melanoma initiating cells. J Invest Dermatol. 2015;135:842–50. https://doi.org/10.1038/jid.2014.464.

    Article  CAS  PubMed  Google Scholar 

  25. Dou J, Wen P, Hu W, Li Y, Wu Y, Liu C, Zhao F, Hu K, Wang J, Jiang C, He X, Gu N. Identifying tumor stem-like cells in mouse melanoma cell lines by analyzing the characteristics of side population cells. Cell Biol Int. 2009;33:807–15. https://doi.org/10.1016/j.cellbi.2009.05.003.

    Article  CAS  PubMed  Google Scholar 

  26. Wouters J, Stas M, Gremeaux L, Govaere O, Van den Broeck A, Maes H, Agostinis P, Roskams T, van den Oord JJ, Vankelecom H. The human melanoma side population displays molecular and functional characteristics of enriched chemoresistance and tumorigenesis. PLoS One. 2013;8:e76550. https://doi.org/10.1371/journal.pone.0076550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bittner M, Meltzer P, Chen Y, Jiang Y, Seftor E, Hendrix M, Radmacher M, Simon R, Yakhini Z, Ben-Dor A, Sampas N, Dougherty E, Wang E, Marincola F, Gooden C, Lueders J, Glatfelter A, Pollock P, Carpten J, Gillanders E, Leja D, Dietrich K, Beaudry C, Berens M, Alberts D, Sondak V. Molecular classification of cutaneous malignant melanoma by gene expression profiling. Nature. 2000;406:536–40. https://doi.org/10.1038/35020115.

    Article  CAS  PubMed  Google Scholar 

  28. Schmidt P, Abken H. The beating heart of melanomas: a minor subset of cancer cells sustains tumor growth. Oncotarget. 2011;2:313–20, doi:259 [pii]

    Article  PubMed  PubMed Central  Google Scholar 

  29. Pinc A, Somasundaram R, Wagner C, Hormann M, Karanikas G, Jalili A, Bauer W, Brunner P, Grabmeier-Pfistershammer K, Gschaider M, Lai CY, Hsu MY, Herlyn M, Stingl G, Wagner SN. Targeting CD20 in melanoma patients at high risk of disease recurrence. Mol Ther. 2012;20:1056–62. https://doi.org/10.1038/mt.2012.27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gedye C, Quirk J, Browning J, Svobodova S, John T, Sluka P, Dunbar PR, Corbeil D, Cebon J, Davis ID. Cancer/testis antigens can be immunological targets in clonogenic CD133+ melanoma cells. Cancer Immunol Immunother. 2009;58:1635–46. https://doi.org/10.1007/s00262-009-0672-0.

    Article  CAS  PubMed  Google Scholar 

  31. Welte Y, Davies C, Schafer R, Regenbrecht CR. Patient derived cell culture and isolation of CD133(+) putative cancer stem cells from melanoma. J Vis Exp. 2013;(73):e50200. https://doi.org/10.3791/50200.

  32. Klein WM, Wu BP, Zhao S, Wu H, Klein-Szanto AJ, Tahan SR. Increased expression of stem cell markers in malignant melanoma. Mod Pathol. 2007;20:102–7, doi:3800720 [pii]

    Article  CAS  PubMed  Google Scholar 

  33. Gonzalez-Herrero I, Romero-Camarero I, Canueto J, Cardenoso-Alvarez E, Fernandez-Lopez E, Perez-Losada J, Sanchez-Garcia I, Roman-Curto C. CD133+ cell content correlates with tumour growth in melanomas from skin with chronic sun-induced damage. Br J Dermatol. 2013;169:830–7. https://doi.org/10.1111/bjd.12428.

    Article  CAS  PubMed  Google Scholar 

  34. Grasso C, Anaka M, Hofmann O, Sompallae R, Broadley K, Hide W, Berridge MV, Cebon J, Behren A, McConnell MJ. Iterative sorting reveals CD133+ and CD133- melanoma cells as phenotypically distinct populations. BMC Cancer. 2016;16:726–016-2759-2. https://doi.org/10.1186/s12885-016-2759-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kumar D, Kumar S, Gorain M, Tomar D, Patil HS, Radharani NN, Kumar TV, Patil TV, Thulasiram HV, Kundu GC. Notch1-MAPK signaling axis regulates CD133+ cancer stem cell-mediated melanoma growth and angiogenesis. J Invest Dermatol. 2016;136(12):2462–74, doi:S0022-202X(16)32232-1 [pii]

    Article  CAS  PubMed  Google Scholar 

  36. Redmer T, Welte Y, Behrens D, Fichtner I, Przybilla D, Wruck W, Yaspo ML, Lehrach H, Schafer R, Regenbrecht CR. The nerve growth factor receptor CD271 is crucial to maintain tumorigenicity and stem-like properties of melanoma cells. PLoS One. 2014;9:e92596. https://doi.org/10.1371/journal.pone.0092596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Beretti F, Manni P, Longo C, Argenziano G, Farnetani F, Cesinaro AM, Witkowski AM, De Pol A, Pellacani G. CD271 is expressed in melanomas with more aggressive behaviour, with correlation of characteristic morphology by in vivo reflectance confocal microscopy. Br J Dermatol. 2015;172:662–8. https://doi.org/10.1111/bjd.13301.

    Article  CAS  PubMed  Google Scholar 

  38. Civenni G, Walter A, Kobert N, Mihic-Probst D, Zipser M, Belloni B, Seifert B, Moch H, Dummer R, van den Broek M, Sommer L. Human CD271-positive melanoma stem cells associated with metastasis establish tumor heterogeneity and long-term growth. Cancer Res. 2011;71:3098–109. https://doi.org/10.1158/0008-5472.CAN-10-3997.

    Article  CAS  PubMed  Google Scholar 

  39. Klinac D, Gray ES, Freeman JB, Reid A, Bowyer S, Millward M, Ziman M. Monitoring changes in circulating tumour cells as a prognostic indicator of overall survival and treatment response in patients with metastatic melanoma. BMC Cancer. 2014;14:423–2407-14-423. https://doi.org/10.1186/1471-2407-14-423.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Marchetti L, Luin S, Bonsignore F, de Nadai T, Beltram F, Cattaneo A. Ligand-induced dynamics of neurotrophin receptors investigated by single-molecule imaging approaches. Int J Mol Sci. 2015;16:1949–79. https://doi.org/10.3390/ijms16011949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cheli Y, Bonnazi VF, Jacquel A, Allegra M, De Donatis GM, Bahadoran P, Bertolotto C, Ballotti R. CD271 is an imperfect marker for melanoma initiating cells. Oncotarget. 2014;5:5272–83, doi:1967 [pii]

    Article  PubMed  PubMed Central  Google Scholar 

  42. Boyle SE, Fedele CG, Corbin V, Wybacz E, Szeto P, Lewin J, Young RJ, Wong A, Fuller R, Spillane J, Speakman D, Donahoe S, Pohl M, Gyorki D, Henderson MA, Johnstone RW, Papenfuss AT, Shackleton M. CD271 expression on patient melanoma cells is unstable and unlinked to tumorigenicity. Cancer Res. 2016;76:3965–77. https://doi.org/10.1158/0008-5472.CAN-15-2377.

    Article  CAS  PubMed  Google Scholar 

  43. Gazzaniga P, Cigna E, Panasiti V, Devirgiliis V, Bottoni U, Vincenzi B, Nicolazzo C, Petracca A, Gradilone A. CD133 and ABCB5 as stem cell markers on sentinel lymph node from melanoma patients. Eur J Surg Oncol. 2010;36:1211–4. https://doi.org/10.1016/j.ejso.2010.05.001.

    Article  CAS  PubMed  Google Scholar 

  44. Ma J, Lin JY, Alloo A, Wilson BJ, Schatton T, Zhan Q, Murphy GF, Waaga-Gasser AM, Gasser M, Stephen Hodi F, Frank NY, Frank MH. Isolation of tumorigenic circulating melanoma cells. Biochem Biophys Res Commun. 2010;402:711–7. https://doi.org/10.1016/j.bbrc.2010.10.091.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Reid AL, Millward M, Pearce R, Lee M, Frank MH, Ireland A, Monshizadeh L, Rai T, Heenan P, Medic S, Kumarasinghe P, Ziman M. Markers of circulating tumour cells in the peripheral blood of patients with melanoma correlate with disease recurrence and progression. Br J Dermatol. 2013;168:85–92. https://doi.org/10.1111/bjd.12057.

    Article  CAS  PubMed  Google Scholar 

  46. Keshet GI, Goldstein I, Itzhaki O, Cesarkas K, Shenhav L, Yakirevitch A, Treves AJ, Schachter J, Amariglio N, Rechavi G. MDR1 expression identifies human melanoma stem cells. Biochem Biophys Res Commun. 2008;368:930–6. https://doi.org/10.1016/j.bbrc.2008.02.022.

    Article  CAS  PubMed  Google Scholar 

  47. Prasmickaite L, Engesaeter BO, Skrbo N, Hellenes T, Kristian A, Oliver NK, Suo Z, Maelandsmo GM. Aldehyde dehydrogenase (ALDH) activity does not select for cells with enhanced aggressive properties in malignant melanoma. PLoS One. 2010;5:e10731. https://doi.org/10.1371/journal.pone.0010731.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Taghizadeh R, Noh M, Huh YH, Ciusani E, Sigalotti L, Maio M, Arosio B, Nicotra MR, Natali P, Sherley JL, La Porta CA. CXCR6, a newly defined biomarker of tissue-specific stem cell asymmetric self-renewal, identifies more aggressive human melanoma cancer stem cells. PLoS One. 2010;5:e15183. https://doi.org/10.1371/journal.pone.0015183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Frank NY, Margaryan A, Huang Y, Schatton T, Waaga-Gasser AM, Gasser M, Sayegh MH, Sadee W, Frank MH. ABCB5-mediated doxorubicin transport and chemoresistance in human malignant melanoma. Cancer Res. 2005;65:4320–33, doi:65/10/4320 [pii]

    Article  CAS  PubMed  Google Scholar 

  50. Dou J, He XF, Cao WH, Zhao FS, Wang XY, Liu YR, Wang J. Overexpression of microRna-200c in CD44+CD133+ CSCS inhibits the cellular migratory and invasion as well as tumorigenicity in mice. Cell Mol Biol (Noisy-le-grand). 2013;Suppl 59:OL1861–8.

    CAS  Google Scholar 

  51. Frank NY, Schatton T, Kim S, Zhan Q, Wilson BJ, Ma J, Saab KR, Osherov V, Widlund HR, Gasser M, Waaga-Gasser AM, Kupper TS, Murphy GF, Frank MH. VEGFR-1 expressed by malignant melanoma-initiating cells is required for tumor growth. Cancer Res. 2011;71:1474–85. https://doi.org/10.1158/0008-5472.CAN-10-1660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Fukunaga-Kalabis M, Martinez G, Nguyen TK, Kim D, Santiago-Walker A, Roesch A, Herlyn M. Tenascin-C promotes melanoma progression by maintaining the ABCB5-positive side population. Oncogene. 2010;29:6115–24. https://doi.org/10.1038/onc.2010.350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Shakhova O, Sommer L. Testing the cancer stem cell hypothesis in melanoma: the clinics will tell. Cancer Lett. 2013;338:74–81. https://doi.org/10.1016/j.canlet.2012.10.009.

    Article  CAS  PubMed  Google Scholar 

  54. Quintana E, Shackleton M, Sabel MS, Fullen DR, Johnson TM, Morrison SJ. Efficient tumour formation by single human melanoma cells. Nature. 2008;456:593–8. https://doi.org/10.1038/nature07567.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Quintana E, Shackleton M, Foster HR, Fullen DR, Sabel MS, Johnson TM, Morrison SJ. Phenotypic heterogeneity among tumorigenic melanoma cells from patients that is reversible and not hierarchically organized. Cancer Cell. 2010;18:510–23. https://doi.org/10.1016/j.ccr.2010.10.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Laga AC, Murphy GF. Cellular heterogeneity in vertical growth phase melanoma. Arch Pathol Lab Med. 2010;134:1750–7. https://doi.org/10.1043/2009-0394-RAR.1.

    Article  PubMed  Google Scholar 

  57. Cheli Y, Giuliano S, Fenouille N, Allegra M, Hofman V, Hofman P, Bahadoran P, Lacour JP, Tartare-Deckert S, Bertolotto C, Ballotti R. Hypoxia and MITF control metastatic behaviour in mouse and human melanoma cells. Oncogene. 2012;31:2461–70. https://doi.org/10.1038/onc.2011.425.

    Article  CAS  PubMed  Google Scholar 

  58. Ghislin S, Deshayes F, Middendorp S, Boggetto N, Alcaide-Loridan C. PHF19 and Akt control the switch between proliferative and invasive states in melanoma. Cell Cycle. 2012;11:1634–45. https://doi.org/10.4161/cc.20095.

    Article  CAS  PubMed  Google Scholar 

  59. O’Connell MP, Marchbank K, Webster MR, Valiga AA, Kaur A, Vultur A, Li L, Herlyn M, Villanueva J, Liu Q, Yin X, Widura S, Nelson J, Ruiz N, Camilli TC, Indig FE, Flaherty KT, Wargo JA, Frederick DT, Cooper ZA, Nair S, Amaravadi RK, Schuchter LM, Karakousis GC, Xu W, Xu X, Weeraratna AT. Hypoxia induces phenotypic plasticity and therapy resistance in melanoma via the tyrosine kinase receptors ROR1 and ROR2. Cancer Discov. 2013;3:1378–93. https://doi.org/10.1158/2159-8290.CD-13-0005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sztiller-Sikorska M, Koprowska K, Jakubowska J, Zalesna I, Stasiak M, Duechler M, Czyz ME. Sphere formation and self-renewal capacity of melanoma cells is affected by the microenvironment. Melanoma Res. 2012;22:215–24. https://doi.org/10.1097/CMR.0b013e3283531317.

    Article  PubMed  Google Scholar 

  61. Tuccitto A, Tazzari M, Beretta V, Rini F, Miranda C, Greco A, Santinami M, Patuzzo R, Vergani B, Villa A, Manenti G, Cleris L, Giardiello D, Alison M, Rivoltini L, Castelli C, Perego M. Immunomodulatory factors control the fate of melanoma tumor initiating cells. Stem Cells. 2016;34:2449–60. https://doi.org/10.1002/stem.2413.

    Article  CAS  PubMed  Google Scholar 

  62. Nishimura EK, Granter SR, Fisher DE. Mechanisms of hair graying: incomplete melanocyte stem cell maintenance in the niche. Science. 2005;307:720–4, doi:1099593 [pii]

    Article  CAS  PubMed  Google Scholar 

  63. Nishimura EK. Melanocyte stem cells: a melanocyte reservoir in hair follicles for hair and skin pigmentation. Pigment Cell Melanoma Res. 2011;24:401–10. https://doi.org/10.1111/j.1755-148X.2011.00855.x.

    Article  CAS  PubMed  Google Scholar 

  64. Li L, Fukunaga-Kalabis M, Herlyn M. Isolation and cultivation of dermal stem cells that differentiate into functional epidermal melanocytes. Methods Mol Biol. 2012;806:15–29. https://doi.org/10.1007/978-1-61779-367-7_2.

    Article  CAS  PubMed  Google Scholar 

  65. Lian CG, Murphy GF. The genetic evolution of melanoma. N Engl J Med. 2016;374:994–5. https://doi.org/10.1056/NEJMc1515834#SA2.

    Article  PubMed  Google Scholar 

  66. Gleason BC, Crum CP, Murphy GF. Expression patterns of MITF during human cutaneous embryogenesis: evidence for bulge epithelial expression and persistence of dermal melanoblasts. J Cutan Pathol. 2008;35:615–22. https://doi.org/10.1111/j.1600-0560.2007.00881.x.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Hoerter JD, Bradley P, Casillas A, Chambers D, Denholm C, Johnson K, Weiswasser B. Extrafollicular dermal melanocyte stem cells and melanoma. Stem Cells Int. 2012;2012:407079. https://doi.org/10.1155/2012/407079.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Eggermont A, Robert C, Soria JC, Zitvogel L. Harnessing the immune system to provide long-term survival in patients with melanoma and other solid tumors. Oncoimmunology. 2014;3:e27560. https://doi.org/10.4161/onci.27560.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Redman JM, Gibney GT, Atkins MB. Advances in immunotherapy for melanoma. BMC Med. 2016;14:20–016-0571-0. https://doi.org/10.1186/s12916-016-0571-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Montagut C, Sharma SV, Shioda T, McDermott U, Ulman M, Ulkus LE, Dias-Santagata D, Stubbs H, Lee DY, Singh A, Drew L, Haber DA, Settleman J. Elevated CRAF as a potential mechanism of acquired resistance to BRAF inhibition in melanoma. Cancer Res. 2008;68:4853–61. https://doi.org/10.1158/0008-5472.CAN-07-6787.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Nazarian R, Shi H, Wang Q, Kong X, Koya RC, Lee H, Chen Z, Lee MK, Attar N, Sazegar H, Chodon T, Nelson SF, McArthur G, Sosman JA, Ribas A, Lo RS. Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation. Nature. 2010;468:973–7. https://doi.org/10.1038/nature09626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Smalley KS, Lioni M, Dalla Palma M, Xiao M, Desai B, Egyhazi S, Hansson J, Wu H, King AJ, Van Belle P, Elder DE, Flaherty KT, Herlyn M, Nathanson KL. Increased cyclin D1 expression can mediate BRAF inhibitor resistance in BRAF V600E-mutated melanomas. Mol Cancer Ther. 2008;7:2876–83. https://doi.org/10.1158/1535-7163.MCT-08-0431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Villanueva J, Vultur A, Lee JT, Somasundaram R, Fukunaga-Kalabis M, Cipolla AK, Wubbenhorst B, Xu X, Gimotty PA, Kee D, Santiago-Walker AE, Letrero R, D’Andrea K, Pushparajan A, Hayden JE, Brown KD, Laquerre S, McArthur GA, Sosman JA, Nathanson KL, Herlyn M. Acquired resistance to BRAF inhibitors mediated by a RAF kinase switch in melanoma can be overcome by cotargeting MEK and IGF-1R/PI3K. Cancer Cell. 2010;18:683–95. https://doi.org/10.1016/j.ccr.2010.11.023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Shi H, Kong X, Ribas A, Lo RS. Combinatorial treatments that overcome PDGFRbeta-driven resistance of melanoma cells to V600EB-RAF inhibition. Cancer Res. 2011;71:5067–74. https://doi.org/10.1158/0008-5472.CAN-11-0140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Greger JG, Eastman SD, Zhang V, Bleam MR, Hughes AM, Smitheman KN, Dickerson SH, Laquerre SG, Liu L, Gilmer TM. Combinations of BRAF, MEK, and PI3K/mTOR inhibitors overcome acquired resistance to the BRAF inhibitor GSK2118436 dabrafenib, mediated by NRAS or MEK mutations. Mol Cancer Ther. 2012;11:909–20. https://doi.org/10.1158/1535-7163.MCT-11-0989.

    Article  CAS  PubMed  Google Scholar 

  76. Paraiso KH, Smalley KS. Making sense of MEK1 mutations in intrinsic and acquired BRAF inhibitor resistance. Cancer Discov. 2012;2:390–2. https://doi.org/10.1158/2159-8290.CD-12-0128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Shi H, Moriceau G, Kong X, Koya RC, Nazarian R, Pupo GM, Bacchiocchi A, Dahlman KB, Chmielowski B, Sosman JA, Halaban R, Kefford RF, Long GV, Ribas A, Lo RS. Preexisting MEK1 exon 3 mutations in V600E/KBRAF melanomas do not confer resistance to BRAF inhibitors. Cancer Discov. 2012;2:414–24. https://doi.org/10.1158/2159-8290.CD-12-0022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Poulikakos PI, Persaud Y, Janakiraman M, Kong X, Ng C, Moriceau G, Shi H, Atefi M, Titz B, Gabay MT, Salton M, Dahlman KB, Tadi M, Wargo JA, Flaherty KT, Kelley MC, Misteli T, Chapman PB, Sosman JA, Graeber TG, Ribas A, Lo RS, Rosen N, Solit DB. RAF inhibitor resistance is mediated by dimerization of aberrantly spliced BRAF(V600E). Nature. 2011;480:387–90. https://doi.org/10.1038/nature10662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Girotti MR, Pedersen M, Sanchez-Laorden B, Viros A, Turajlic S, Niculescu-Duvaz D, Zambon A, Sinclair J, Hayes A, Gore M, Lorigan P, Springer C, Larkin J, Jorgensen C, Marais R. Inhibiting EGF receptor or SRC family kinase signaling overcomes BRAF inhibitor resistance in melanoma. Cancer Discov. 2013;3:158–67. https://doi.org/10.1158/2159-8290.CD-12-0386.

    Article  CAS  PubMed  Google Scholar 

  80. Colombino M, Capone M, Lissia A, Cossu A, Rubino C, De Giorgi V, Massi D, Fonsatti E, Staibano S, Nappi O, Pagani E, Casula M, Manca A, Sini M, Franco R, Botti G, Caraco C, Mozzillo N, Ascierto PA, Palmieri G. BRAF/NRAS mutation frequencies among primary tumors and metastases in patients with melanoma. J Clin Oncol. 2012;30:2522–9. https://doi.org/10.1200/JCO.2011.41.2452.

    Article  PubMed  Google Scholar 

  81. Bailey CM, Morrison JA, Kulesa PM. Melanoma revives an embryonic migration program to promote plasticity and invasion. Pigment Cell Melanoma Res. 2012;25:573–83. https://doi.org/10.1111/j.1755-148X.2012.01025.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Borrull A, Ghislin S, Deshayes F, Lauriol J, Alcaide-Loridan C, Middendorp S. Nanog and Oct4 overexpression increases motility and transmigration of melanoma cells. J Cancer Res Clin Oncol. 2012;138:1145–54. https://doi.org/10.1007/s00432-012-1186-2.

    Article  CAS  PubMed  Google Scholar 

  83. Ascierto PA, Kalos M, Schaer DA, Callahan MK, Wolchok JD. Biomarkers for immunostimulatory monoclonal antibodies in combination strategies for melanoma and other tumor types. Clin Cancer Res. 2013;19:1009–20. https://doi.org/10.1158/1078-0432.CCR-12-2982.

    Article  CAS  PubMed  Google Scholar 

  84. Bertolotto C. Melanoma: from melanocyte to genetic alterations and clinical options. Scientifica (Cairo). 2013;2013:635203. https://doi.org/10.1155/2013/635203.

    Article  CAS  Google Scholar 

  85. Homet B, Ribas A. New drug targets in metastatic melanoma. J Pathol. 2014;232:134–41. https://doi.org/10.1002/path.4259.

    Article  CAS  PubMed  Google Scholar 

  86. Takebe N, Nguyen D, Yang SX. Targeting notch signaling pathway in cancer: clinical development advances and challenges. Pharmacol Ther. 2014;141:140–9. https://doi.org/10.1016/j.pharmthera.2013.09.005.

    Article  CAS  PubMed  Google Scholar 

  87. Liu LS, Colegio OR. Molecularly targeted therapies for melanoma. Int J Dermatol. 2013;52:523–30. https://doi.org/10.1111/j.1365-4632.2012.05829.x.

    Article  PubMed  Google Scholar 

  88. Rizos H, Menzies AM, Pupo GM, Carlino MS, Fung C, Hyman J, Haydu LE, Mijatov B, Becker TM, Boyd SC, Howle J, Saw R, Thompson JF, Kefford RF, Scolyer RA, Long GV. BRAF inhibitor resistance mechanisms in metastatic melanoma: spectrum and clinical impact. Clin Cancer Res. 2014;20:1965–77. https://doi.org/10.1158/1078-0432.CCR-13-3122.

    Article  CAS  PubMed  Google Scholar 

  89. Fidler IJ. Tumor heterogeneity and the biology of cancer invasion and metastasis. Cancer Res. 1978;38:2651–60.

    CAS  PubMed  Google Scholar 

  90. Ennen M, Keime C, Kobi D, Mengus G, Lipsker D, Thibault-Carpentier C, Davidson I. Single-cell gene expression signatures reveal melanoma cell heterogeneity. Oncogene. 2015;34:3251–63. https://doi.org/10.1038/onc.2014.262.

    Article  CAS  PubMed  Google Scholar 

  91. Yancovitz M, Litterman A, Yoon J, Ng E, Shapiro RL, Berman RS, Pavlick AC, Darvishian F, Christos P, Mazumdar M, Osman I, Polsky D. Intra- and inter-tumor heterogeneity of BRAF(V600E)mutations in primary and metastatic melanoma. PLoS One. 2012;7:e29336. https://doi.org/10.1371/journal.pone.0029336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Lin J, Goto Y, Murata H, Sakaizawa K, Uchiyama A, Saida T, Takata M. Polyclonality of BRAF mutations in primary melanoma and the selection of mutant alleles during progression. Br J Cancer. 2011;104:464–8. https://doi.org/10.1038/sj.bjc.6606072.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Sensi M, Nicolini G, Petti C, Bersani I, Lozupone F, Molla A, Vegetti C, Nonaka D, Mortarini R, Parmiani G, Fais S, Anichini A. Mutually exclusive NRASQ61R and BRAFV600E mutations at the single-cell level in the same human melanoma. Oncogene. 2006;25:3357–64, doi:1209379 [pii]

    Article  CAS  PubMed  Google Scholar 

  94. Long GV, Wilmott JS, Haydu LE, Tembe V, Sharma R, Rizos H, Thompson JF, Howle J, Scolyer RA, Kefford RF. Effects of BRAF inhibitors on human melanoma tissue before treatment, early during treatment, and on progression. Pigment Cell Melanoma Res. 2013;26:499–508. https://doi.org/10.1111/pcmr.12098.

    Article  CAS  PubMed  Google Scholar 

  95. Wilmott JS, Tembe V, Howle JR, Sharma R, Thompson JF, Rizos H, Lo RS, Kefford RF, Scolyer RA, Long GV. Intratumoral molecular heterogeneity in a BRAF-mutant, BRAF inhibitor-resistant melanoma: a case illustrating the challenges for personalized medicine. Mol Cancer Ther. 2012;11:2704–8. https://doi.org/10.1158/1535-7163.MCT-12-0530.

    Article  CAS  PubMed  Google Scholar 

  96. Roesch A, Vultur A, Bogeski I, Wang H, Zimmermann KM, Speicher D, Korbel C, Laschke MW, Gimotty PA, Philipp SE, Krause E, Patzold S, Villanueva J, Krepler C, Fukunaga-Kalabis M, Hoth M, Bastian BC, Vogt T, Herlyn M. Overcoming intrinsic multidrug resistance in melanoma by blocking the mitochondrial respiratory chain of slow-cycling JARID1B(high) cells. Cancer Cell. 2013;23:811–25. https://doi.org/10.1016/j.ccr.2013.05.003.

    Article  CAS  PubMed  Google Scholar 

  97. Chartrain M, Riond J, Stennevin A, Vandenberghe I, Gomes B, Lamant L, Meyer N, Gairin JE, Guilbaud N, Annereau JP. Melanoma chemotherapy leads to the selection of ABCB5-expressing cells. PLoS One. 2012;7:e36762. https://doi.org/10.1371/journal.pone.0036762.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Richard G, Dalle S, Monet MA, Ligier M, Boespflug A, Pommier RM, de la Fouchardiere A, Perier-Muzet M, Depaepe L, Barnault R, Tondeur G, Ansieau S, Thomas E, Bertolotto C, Ballotti R, Mourah S, Battistella M, Lebbe C, Thomas L, Puisieux A, Caramel J. ZEB1-mediated melanoma cell plasticity enhances resistance to MAPK inhibitors. EMBO Mol Med. 2016;8:1143–61. https://doi.org/10.15252/emmm.201505971.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Zubrilov I, Sagi-Assif O, Izraely S, Meshel T, Ben-Menahem S, Ginat R, Pasmanik-Chor M, Nahmias C, Couraud PO, Hoon DS, Witz IP. Vemurafenib resistance selects for highly malignant brain and lung-metastasizing melanoma cells. Cancer Lett. 2015;361:86–96. https://doi.org/10.1016/j.canlet.2015.02.041.

    Article  CAS  PubMed  Google Scholar 

  100. Singh A, Settleman J. EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene. 2010;29:4741–51. https://doi.org/10.1038/onc.2010.215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Du J, Miller AJ, Widlund HR, Horstmann MA, Ramaswamy S, Fisher DE. MLANA/MART1 and SILV/PMEL17/GP100 are transcriptionally regulated by MITF in melanocytes and melanoma. Am J Pathol. 2003;163:333–43, doi:S0002-9440(10)63657-7 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Strub T, Giuliano S, Ye T, Bonet C, Keime C, Kobi D, Le Gras S, Cormont M, Ballotti R, Bertolotto C, Davidson I. Essential role of microphthalmia transcription factor for DNA replication, mitosis and genomic stability in melanoma. Oncogene. 2011;30:2319–32. https://doi.org/10.1038/onc.2010.612.

    Article  CAS  PubMed  Google Scholar 

  103. Bartlett EK, Fetsch PA, Filie AC, Abati A, Steinberg SM, Wunderlich JR, White DE, Stephens DJ, Marincola FM, Rosenberg SA, Kammula US. Human melanoma metastases demonstrate nonstochastic site-specific antigen heterogeneity that correlates with T-cell infiltration. Clin Cancer Res. 2014;20:2607–16. https://doi.org/10.1158/1078-0432.CCR-13-2690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Gray-Schopfer VC, Karasarides M, Hayward R, Marais R. Tumor necrosis factor-alpha blocks apoptosis in melanoma cells when BRAF signaling is inhibited. Cancer Res. 2007;67:122–9, doi:67/1/122.[pii]

    Article  CAS  PubMed  Google Scholar 

  105. Landsberg J, Kohlmeyer J, Renn M, Bald T, Rogava M, Cron M, Fatho M, Lennerz V, Wolfel T, Holzel M, Tuting T. Melanomas resist T-cell therapy through inflammation-induced reversible dedifferentiation. Nature. 2012;490:412–6. https://doi.org/10.1038/nature11538.

    Article  CAS  PubMed  Google Scholar 

  106. Koefinger P, Wels C, Joshi S, Damm S, Steinbauer E, Beham-Schmid C, Frank S, Bergler H, Schaider H. The cadherin switch in melanoma instigated by HGF is mediated through epithelial-mesenchymal transition regulators. Pigment Cell Melanoma Res. 2011;24:382–5. https://doi.org/10.1111/j.1755-148X.2010.00807.x.

    Article  CAS  PubMed  Google Scholar 

  107. Wilson BJ, Saab KR, Ma J, Schatton T, Putz P, Zhan Q, Murphy GF, Gasser M, Waaga-Gasser AM, Frank NY, Frank MH. ABCB5 maintains melanoma-initiating cells through a proinflammatory cytokine signaling circuit. Cancer Res. 2014;74:4196–207. https://doi.org/10.1158/0008-5472.CAN-14-0582.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Krepler C, Chunduru SK, Halloran MB, He X, Xiao M, Vultur A, Villanueva J, Mitsuuchi Y, Neiman EM, Benetatos C, Nathanson KL, Amaravadi RK, Pehamberger H, McKinlay M, Herlyn M. The novel SMAC mimetic birinapant exhibits potent activity against human melanoma cells. Clin Cancer Res. 2013;19:1784–94. https://doi.org/10.1158/1078-0432.CCR-12-2518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Menon DR, Das S, Krepler C, Vultur A, Rinner B, Schauer S, Kashofer K, Wagner K, Zhang G, Rad EB, Haass NK, Soyer HP, Gabrielli B, Somasundaram R, Hoefler G, Herlyn M, Schaider H. A stress-induced early innate response causes multidrug tolerance in melanoma. Oncogene. 2015;34:4545. https://doi.org/10.1038/onc.2014.432.

    Article  CAS  PubMed  Google Scholar 

  110. Riesenberg S, Groetchen A, Siddaway R, Bald T, Reinhardt J, Smorra D, Kohlmeyer J, Renn M, Phung B, Aymans P, Schmidt T, Hornung V, Davidson I, Goding CR, Jonsson G, Landsberg J, Tuting T, Holzel M. MITF and c-Jun antagonism interconnects melanoma dedifferentiation with pro-inflammatory cytokine responsiveness and myeloid cell recruitment. Nat Commun. 2015;6:8755. https://doi.org/10.1038/ncomms9755.

    Article  CAS  PubMed  Google Scholar 

  111. Schlaak M, Schmidt P, Bangard C, Kurschat P, Mauch C, Abken H. Regression of metastatic melanoma in a patient by antibody targeting of cancer stem cells. Oncotarget. 2012;3:22–30, doi:437 [pii]

    Article  PubMed  PubMed Central  Google Scholar 

  112. Song H, Su X, Yang K, Niu F, Li J, Song J, Chen H, Li B, Li W, Qian W, Cao X, Guo S, Dai J, Feng SS, Guo Y, Yin C, Gao J. CD20 antibody-conjugated immunoliposomes for targeted chemotherapy of melanoma cancer initiating cells. J Biomed Nanotechnol. 2015;11:1927–46.

    Article  CAS  PubMed  Google Scholar 

  113. Elliott A, Adams J, Al-Hajj M. The ABCs of cancer stem cell drug resistance. IDrugs. 2010;13:632–5.

    CAS  PubMed  Google Scholar 

  114. Wilson BJ, Schatton T, Zhan Q, Gasser M, Ma J, Saab KR, Schanche R, Waaga-Gasser AM, Gold JS, Huang Q, Murphy GF, Frank MH, Frank NY. ABCB5 identifies a therapy-refractory tumor cell population in colorectal cancer patients. Cancer Res. 2011;71:5307–16. https://doi.org/10.1158/0008-5472.CAN-11-0221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Kemper K, Sprick MR, de Bree M, Scopelliti A, Vermeulen L, Hoek M, Zeilstra J, Pals ST, Mehmet H, Stassi G, Medema JP. The AC133 epitope, but not the CD133 protein, is lost upon cancer stem cell differentiation. Cancer Res. 2010;70:719–29. https://doi.org/10.1158/0008-5472.CAN-09-1820.

    Article  CAS  PubMed  Google Scholar 

  116. Ngo M, Han A, Lakatos A, Sahoo D, Hachey SJ, Weiskopf K, Beck AH, Weissman IL, Boiko AD. Antibody therapy targeting CD47 and CD271 effectively suppresses melanoma metastasis in patient-derived senografts. Cell Rep. 2016;16:1701–16. https://doi.org/10.1016/j.celrep.2016.07.004.

    Article  CAS  PubMed  Google Scholar 

  117. Zhao F, He X, Wang Y, Shi F, Wu D, Pan M, Li M, Wu S, Wang X, Dou J. Decrease of ZEB1 expression inhibits the B16F10 cancer stem-like properties. Biosci Trends. 2015;9:325–34. https://doi.org/10.5582/bst.2015.01106.

    Article  CAS  PubMed  Google Scholar 

  118. Meier C, Hardtstock P, Joost S, Alla V, Putzer BM. p73 and IGF1R regulate emergence of aggressive cancer stem-like features via miR-885-5p control. Cancer Res. 2016;76:197–205. https://doi.org/10.1158/0008-5472.CAN-15-1228.

    Article  CAS  PubMed  Google Scholar 

  119. Calvani M, Bianchini F, Taddei ML, Becatti M, Giannoni E, Chiarugi P, Calorini L. Etoposide-Bevacizumab a new strategy against human melanoma cells expressing stem-like traits. Oncotarget. 2016;7(32):51138–49. https://doi.org/10.18632/oncotarget.9939.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Lehraiki A, Cerezo M, Rouaud F, Abbe P, Allegra M, Kluza J, Marchetti P, Imbert V, Cheli Y, Bertolotto C, Ballotti R, Rocchi S. Increased CD271 expression by the NF-kB pathway promotes melanoma cell survival and drives acquired resistance to BRAF inhibitor vemurafenib. Cell Discov. 2015;1:15030. https://doi.org/10.1038/celldisc.2015.30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Kaushik G, Venugopal A, Ramamoorthy P, Standing D, Subramaniam D, Umar S, Jensen RA, Anant S, Mammen JM. Honokiol inhibits melanoma stem cells by targeting notch signaling. Mol Carcinog. 2015;54:1710–21. https://doi.org/10.1002/mc.22242.

    Article  CAS  PubMed  Google Scholar 

  122. Shidal C, Al-Rayyan N, Yaddanapudi K, Davis KR. Lunasin is a novel therapeutic agent for targeting melanoma cancer stem cells. Oncotarget. 2016;7(51):84128–41. https://doi.org/10.18632/oncotarget.11554.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Sangiolo D, Gammaitoni L, Giraudo L, Macagno M, Leuci V, Mesiano G, Rotolo R, Sassi F, Sanlorenzo M, Zaccagna A, Pisacane A, Senetta R, Cangemi M, Cattaneo G, Martin V, Coha V, Gallo S, Pignochino Y, Sapino A, Grignani G, Carnevale-Schianca F, Aglietta M. Cytokine induced killer cells kill chemo-surviving melanoma cancer stem cells. Clin Cancer Res. 2016;23(9):2277–88, doi:clincanres.1524.2016 [pii]

    PubMed  Google Scholar 

  124. Hu Y, Lu L, Xia Y, Chen X, Chang AE, Hollingsworth RE, Hurt E, Owen J, Moyer JS, Prince ME, Dai F, Bao Y, Wang Y, Whitfield J, Xia JC, Huang S, Wicha MS, Li Q. Therapeutic efficacy of cancer stem cell vaccines in the adjuvant setting. Cancer Res. 2016;76:4661–72. https://doi.org/10.1158/0008-5472.CAN-15-2664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Bonchak JG, Eby JM, Willenborg KA, Chrobak D, Henning SW, Krzywiec A, Johnson SL, Le Poole IC. Targeting melanocyte and melanoma stem cells by 8-hydroxy-2-dipropylaminotetralin. Arch Biochem Biophys. 2014;563:71–8. https://doi.org/10.1016/j.abb.2014.07.033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Dashti A, Ebrahimi M, Hadjati J, Memarnejadian A, Moazzeni SM. Dendritic cell based immunotherapy using tumor stem cells mediates potent antitumor immune responses. Cancer Lett. 2016;374:175–85. https://doi.org/10.1016/j.canlet.2016.01.021.

    Article  CAS  PubMed  Google Scholar 

  127. Mackiewicz A, Mackiewicz J, Wysocki PJ, Wiznerowicz M, Kapcinska M, Laciak M, Rose-John S, Izycki D, Burzykowski T, Karczewska-Dzionk A. Long-term survival of high-risk melanoma patients immunized with a Hyper-IL-6-modified allogeneic whole-cell vaccine after complete resection. Expert Opin Investig Drugs. 2012;21:773–83. https://doi.org/10.1517/13543784.2012.684753.

    Article  CAS  PubMed  Google Scholar 

  128. Uemura M, Trinh VA, Haymaker C, Jackson N, Kim DW, Allison JP, Sharma P, Vence L, Bernatchez C, Hwu P, Diab A. Selective inhibition of autoimmune exacerbation while preserving the anti-tumor clinical benefit using IL-6 blockade in a patient with advanced melanoma and Crohn’s disease: a case report. J Hematol Oncol. 2016;9:81–016-0309-7. https://doi.org/10.1186/s13045-016-0309-7.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by AIRC (Associazione Italiana Ricerca sul Cancro) (IG grant: CC IG-10615). The authors are grateful to Dr. Valeria Beretta and Dr. Francesca Rini (Unit of Immunotherapy of Human Tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy) for their active contribution in our melanoma stem cell studies.

No Conflict Statement

The authors declare no potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chiara Castelli or Michela Perego .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tuccitto, A., Castelli, C., Alison, M.R., Perego, M. (2019). Cancer Stem Cell Challenges in Melanoma Characterization and Treatment. In: Maccalli, C., Todaro, M., Ferrone, S. (eds) Cancer Stem Cell Resistance to Targeted Therapy. Resistance to Targeted Anti-Cancer Therapeutics, vol 19. Springer, Cham. https://doi.org/10.1007/978-3-030-16624-3_5

Download citation

Publish with us

Policies and ethics