Skip to main content
Log in

Next generation sequencing, biochemical characterization, metabolic pathway analysis of novel probiotic Pediococcus acidilactici NCDC 252 and it’s evolutionary relationship with other lactic acid bacteria

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Pediococcus acidilactici NCDC 252 is a facultative anaerobe of dairy origin that possessed all studied in vitro probiotic attributes and several useful enzyme activities. Its whole genome was sequenced and analysed for its evolutionary relationship with other lactic acid bacteria (LAB). This is a novel sequence and first report of genome sequence of P. acidilactici of dairy origin. Its genome is relatively larger than other studied genomes of P. acidilactici and is comprised of 40 scaffolds that totals to 3,243,337 bases and 44.5% GC content. A total of 3054 coding sequences (CDS) were identified by RAST and DIAMOND servers. The genome also encoded different enzyme activities required for utilization of various carbohydrates. This was also confirmed by carbohydrate utilization studies. The genome also encoded genes for probiotics properties. The phylogenetic analysis of P. acidilactici NCDC 252 genome was done using Maximum Parsimony and Maximum Likelihood methods to study its evolution and relatedness to other LABs based upon their 16S rDNA sequences. The strain exhibited highest resemblance to Lactobacillus plantarum WCFS1 and is also much close to P. acidilactici based on similarity of ribosomal protein. The strain seems to have acquired some genes for its adaptation in dairy/environmental niche. This genome sequence is novel with genome more similar to L. plantarum and biochemical and phenotypic characteristics of P. acidilactici.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Marco ML, Pavan S, Kleerebezem M (2006) Towards understanding molecular modes of probiotic action. Curr Opin Biotechnol 17(2):204–210

    Article  CAS  Google Scholar 

  2. FAO/WHO Working Group Report (2002) Guidelines for the evaluation of probiotics in food. London

  3. Attri P, Jodha D, Gandhi D, Chanalia P, Dhanda S (2015) In vitro evaluation of Pediococcus acidilactici NCDC 252 for its probiotics attributes. Int J Dairy Technol. https://doi.org/10.1111/1471-0307.12194

    Article  Google Scholar 

  4. Albano H, Todorov SA, van Reenen CA, Hogg T, Dicks LMT, Teixeira P (2007) Characterization of two bacteriocins produced by Pediococcus acidilactici isolated from “Alheira”, a fermented sausage traditionally produced in Portugal. Int J Food Microbiol 116(2):239–247

    Article  CAS  Google Scholar 

  5. Abrams D, Joana Barbosa J, Helena Albano H, Silva J, Gibbs PA, Teixeira P (2011) Characterization of bacPPK34 a bacteriocin produced by Pediococcus pentosaceus strain K34 isolated from “Alheira”. Food Control 22(6):940–946

    Article  CAS  Google Scholar 

  6. Attri P, Jodha D, Gandhi D, Dhanda S (2012) Screening of intracellular, extracellular and membrane bound exopeptidases in lactic acid bacteria (LAB). Milchwissenschaft 67(4):421–424

    CAS  Google Scholar 

  7. Gandhi D, Chanalia P, Attri P, Dhanda S (2016) Dipeptidyl peptidase-II from probiotic Pediococcus acidilactici: purification and functional characterization. Int J Biol Macromol 93:919–932

    Article  CAS  Google Scholar 

  8. Chanalia P, Gandhi D, Attri P, Dhanda S (2017) Purification and characterization of beta galactosidase from probiotic Pediococcucs acidilactici and its use in milk hydrolysis and galactooligosaccharide synthesis. Bioorg Chem 77:176–189

    Article  Google Scholar 

  9. Attri P, Khaket TP, Jodha D, Singh J, Dhanda S (2015) Biochemical, kinetic and in silico characterization of DING protein purified from the probiotic lactic acid bacteria Pediococcus acidilactici NCDC 252. Appl Biochem Biotechnol 175:1092–1110

    Article  CAS  Google Scholar 

  10. Senan S, Prajapati JB, Joshi CG (2015) Feasibility of genome-wide screening for biosafety assessment of probiotics: a case study of Lactobacillus helveticus MTCC 5463. Probiotics Antimicrob Proteins 7:249–258

    Article  CAS  Google Scholar 

  11. Bartholomew JW, Mittwer T (1952) The gram stain. Bacteriol Rev 16(1):1–29

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Jacox RF (1953) Streptococcal β-glucuronidase. J Bacteriol 65(6):700–705

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Bolger AM, Marc L, Bjoern U (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30(15):2114–2120

    Article  CAS  Google Scholar 

  14. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko Sergey I, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19(5):455–477

    Article  CAS  Google Scholar 

  15. Hyatt D, Chen GL, LoCascio PF, Land ML, Larimer FW, Hauser LJ (2010) Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinform 11:119

    Article  Google Scholar 

  16. Buchfink B, Xie C, Huson DH (2015) Fast and sensitive protein alignment using DIAMOND. Nat Methods 12(1):59

    Article  CAS  Google Scholar 

  17. Grant JR, Stothard P (2008) The CGView server: a comparative genomics tool for circular genomes. Nucleic Acids Res 36:W81–W184

    Article  Google Scholar 

  18. Gotz S, Garcia-Gomez JM, Terol J, Williams TD, Nagaraj SH, Nueda MJ, Robles M, Talon M, Dopazo J, Conesa A (2008) High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res 36(10):3420–3435

    Article  CAS  Google Scholar 

  19. Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M (2007) KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res 3:W182–W185

    Article  Google Scholar 

  20. Tamura K, Glen S, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30(12):2725–2729

    Article  CAS  Google Scholar 

  21. De Vos P, Garrity GM, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer KH, Whitman WB (2009) Bergey’s manual of systematic bacteriology. The firmicutes, vol 3. Springer, Dordrecht

    Google Scholar 

  22. Papagianni M, Anastasiadou S (2009) Pediocins: the bacteriocins of Pediococci. Sources, production, properties and applications. Microb Cell Fact 8:1–16

    Article  Google Scholar 

  23. Tanasupawat S, Okada S, Kozaq M, Komagata K (1993) Characterization of Pediococcus pentosaceus and Pediococcus acidilactici strains and replacement of the type strain of P. acidilactici with the proposed neotype DSM 20284. Int J Syst Evol Microbiol 43(4):860–863

    Google Scholar 

  24. Barros RR, Carvalho MG, Peralta JM, Facklam RR, Teixeira LM (2001) Phenotypic and genotypic characterization of Pediococcus strains isolated from human clinical sources. J Clin Microbiol 39(4):1241–1246

    Article  CAS  Google Scholar 

  25. Siezen RJ, Tzenev VA, Castioni A, Wels M, Phan HTK, Rademaker JLW, Starrenburg MJC, Kleerebezem M, Molenaar D (2010) Phenotypic and genomic diversity of Lactobacillus plantarum strains isolated from various environmental niches. Environ Microbiol 12(3):758–773

    Article  CAS  Google Scholar 

  26. Mroczynska M, Libudzisz Z (2010) β-glucourinidase and β-glucosidase activity of Lactobacillus and Enterococcus isolated from human feces. Pol J Microbiol 59(4):265–269

    Article  CAS  Google Scholar 

  27. Uccello M, Malaguarnera G, Basile F, D’agata V, Malaguarnera M, Bertino G, Vacante M, Drago F, Biondi A (2012) Potential role of probiotics on colorectal cancer prevention. BMC Surg 12:S35

    Article  Google Scholar 

  28. Florez AB, Egervarn M, Danielsen M, Tosi L, Morelli L, Lindgren S, Mayo B (2006) Susceptibility of Lactobacillus plantarum strains to six antibiotics and definition of new susceptibility–resistance cutoff values. Microb Drug Resist 12(4):252–256

    Article  CAS  Google Scholar 

  29. Simpson WJ, Taguchi H (1995) The genus Pediococcus, with notes on the genera Tetratogenococcus and Aerococcus. Gen Lactic Acid Bact 2:125–172

    Article  Google Scholar 

  30. Arahal DR (2014) Whole genome analyses: average nucleotide identity. Methods Microbiol 41:103–122

    Article  CAS  Google Scholar 

  31. Zhang ZG, Ye ZQ, Yu L, Shi P (2011) Phylogenomic reconstruction of lactic acid bacteria: an update. BMC Evol Biol 11:1

    Article  CAS  Google Scholar 

  32. Hebert PDN, Cywinska A, Ball SL, deWaard JR (2003) Biological identifications through DNA barcodes. Proc Biol Sci 270:313–321

    Article  CAS  Google Scholar 

  33. Hebert PDN, Ratnasingham S, deWaard JR (2003) Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc Biol Sci 270(Suppl_1):S96–S99

    Article  CAS  Google Scholar 

  34. Hebert PD, Penton EH, Burns JM, Janzen DH, Hallwachs W (2004) Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proc Natl Acad Sci USA 101:14812–14817

    Article  CAS  Google Scholar 

  35. Hebert PDN, Stoeckle MY, Zemlak TS, Francis CM (2004) Identification of birds through DNA barcodes. PLoS Biol 2:1657–1663

    Article  CAS  Google Scholar 

  36. Altschul SF, Gish W, Miller W, Meyers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  Google Scholar 

  37. Stackebrandt E, Goebel BM (1994) Taxonomic note: a place for DNA-DNA reassociation and 16 s rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 44:846–849

    Article  CAS  Google Scholar 

  38. Chantawongsatorn K, Vatanyoopaisarn S, Rutatip S (2016) Phylogenetic analysis of 16S rDNA sequences of Pediococcus acidilactici TISTR 2309: relationships between closely related species. KMUTNB Int J Sci Appl Technol 9(2):137–144

    Google Scholar 

Download references

Acknowledgements

The authors are thankful to Department of Science and Technology, New Delhi, India for funding the work.

Funding

This work was funded Department of Science and Technology, New Delhi, India in the framework of the project “Phenotypic, biochemical and molecular characterization of Pediococcus acidilactici: a potential biotherapeutic agent” (NO. SB/YS/LS-180/2014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suman Dhanda.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 26 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bansal, P., Kumar, R., Singh, J. et al. Next generation sequencing, biochemical characterization, metabolic pathway analysis of novel probiotic Pediococcus acidilactici NCDC 252 and it’s evolutionary relationship with other lactic acid bacteria. Mol Biol Rep 46, 5883–5895 (2019). https://doi.org/10.1007/s11033-019-05022-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-019-05022-z

Keywords

Navigation