Skip to main content
Log in

Biochemical, Kinetic, and In Silico Characterization of DING Protein Purified from Probiotic Lactic Acid Bacteria Pediococcus acidilactici NCDC 252

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

DING proteins are intriguing proteins characterized by conserved N-terminal sequence. In spite of unusually high sequence conservation even between distantly related species, DING proteins exhibit outstanding functional diversity. An extracellular caseinolytic alkaline enzyme was purified to homogeneity from a probiotic lactic acid bacteria Pediococcus acidilactici NCDC 252 using a simple procedure involving ammonium sulphate precipitation and gel filtration chromatography. This was purified 45.72-fold with a yield and specific activity of 43.5 % and 250 U/mg, respectively. The calculated molecular weight was 38.7 and 38.9 kDa by MALDI and SDS-PAGE, respectively, and pI was 7.77. The enzyme exhibited optimal activity at pH 8.0 and 40 °C. It was considerably stable up to pH 12. For casein, the enzyme had K m of 20 μM with V max of 26 U/ml. The enzyme was resistant to organic solvents but sensitive to DTNB and EDTA that confirmed it as thiol protein with involvement of metal ions in catalysis. Its tryptic peptide fragments showed 95 % similarity with eukaryotic DING, i.e., human phosphate binding protein (HPBP). Homology-based structure evaluation using HBPB as template revealed both to be structurally conserved and also possessing conserved phosphate binding motifs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Riah, O., Dousset, J. C., Bofill-Cardona, E., & Courriere, P. (2000). Cellular and Molecular Neurobiology, 20, 653–664.

    Article  CAS  Google Scholar 

  2. Weebadda, W. K., Hoover, G. J., Hunter, D. B., & Hayes, M. A. (2001). Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 130(3), 299–312.

    Article  CAS  Google Scholar 

  3. Adams, L., Davey, S., & Scott, K. (2002). Biochimica et Biophysica Acta, 1586, 254–264.

    Article  CAS  Google Scholar 

  4. Kumar, V., Yu, S., Farell, G., Toback, F. G., & Lieske, J. C. (2004). American Journal of Physiology. Renal Physiology, 287(3), 373–383.

    Article  Google Scholar 

  5. Scott, K., & Wu, L. (2005). Biochimica et Biophysica Acta, 1744, 234–244.

    Article  CAS  Google Scholar 

  6. Darbinian-Sarkissian, N., Darbinyan, A., Otte, J., Radhakrishnan, S., Sawaya, B. E., Arzumanyan, A., Chipitsyna, G., Popov, Y., Rappaport, J., Amini, S., & Khalili, K. (2006). Gene Therapy, 13, 288–295.

    Article  CAS  Google Scholar 

  7. Morales, R., Berna, A., Carpentier, P., Contreras-Martel, C., Renault, F., Nicodeme, M., Chesne-Seck, M. L., Bernier, F., Dupuy, J., Schaeffer, C., Diemer, H., Van-Dorsselaer, A., Fontecilla-Camps, J. C., Masson, P., Rochu, D., & Chabriere, E. (2006). Structure, 14, 601–609.

    Article  CAS  Google Scholar 

  8. Chen, Z., Franco, C. F., Baptista, R. P., Cabral, J. M., Coelho, A. V., Rodrigues, C. J., & Melo, E. P. (2007). Applied Microbiology and Biotechnology, 73(6), 1306–1313.

    Article  CAS  Google Scholar 

  9. Berna, A., Bernier, F., Chabriere, E., Perera, T., & Scott, K. (2008). International Journal of Biochemistry and Cell Biology, 40, 170–175.

    Article  CAS  Google Scholar 

  10. Perera, T., Berna, A., Scott, K., Lemaitre-Guillier, C., & Bernier, F. (2008). Phytochemistry, 69, 865–872.

    Article  CAS  Google Scholar 

  11. Berna, A., Scott, K., Chabriere, E., & Bernier, F. (2009). Bioessays, 31, 570–580.

    Article  CAS  Google Scholar 

  12. Maro, A., De Maio, A., Castellano, S., Parente, A., & Farina, B. (2009). Biological Chemistry, 390, 27–30.

    Google Scholar 

  13. Liebschner, D., Elias, M., Moniot, S., Fournier, B., & Scott, K. (2009). Journal of the American Chemical Society, 131, 7879–7886.

    Article  CAS  Google Scholar 

  14. Lesner, A., Shilpi, R., Ivanova, A., Gawinowicz, M. A., & Lesniak, J. (2009). Biochemical and Biophysical Research Communications, 389, 284–289.

    Article  CAS  Google Scholar 

  15. Hain, N. A., Stuhlmuller, B., Hahn, G. R., Kalden, J. R., & Deutzmann, R. (1996). Journal of Immunology, 157, 1773–1780.

    CAS  Google Scholar 

  16. Hendriks, M. L., Lambalk, C. B., Helder, M. N., & DeKoning, J. (2011). Molecular Reproduction and Development, 78, 292–304.

    Article  CAS  Google Scholar 

  17. Todorov, P. T., Wyke, S. M., & Tisdale, M. J. (2007). Cancer Research, 67, 11419–11427.

    Article  CAS  Google Scholar 

  18. Ahn, S., Moniot, S., Elias, M., Chabriere, E., Kim, D., & Scott, K. (2007). FEBS Letters, 581, 3455–3460.

    Article  CAS  Google Scholar 

  19. Berna, A., Bernier, F., Scott, K., & Stuhlmuller, B. (2002). FEBS Letters, 524, 6–10.

    Article  CAS  Google Scholar 

  20. Kunitz, M. (1947). Journal of General Physiology, 30(4), 291–310.

    Article  CAS  Google Scholar 

  21. Lowry, O. H., Rosebrough, N., Farr, A., & Randall, R. (1951). Journal of Biological Chemistry, 193, 265–275.

    CAS  Google Scholar 

  22. Davis, B. J. (1964). Annals of the New York Academy of Sciences, 121, 404–427.

    Article  CAS  Google Scholar 

  23. Laemmli, U. K. (1970). Nature, 227, 680–685.

    Article  CAS  Google Scholar 

  24. Lineweaver, H., & Burk, D. (1934). Journal of the American Chemical Society, 56(3), 658–666.

    Article  CAS  Google Scholar 

  25. Hanes, C. S. (1932). Biochemical Journal, 26, 1406–1421.

    CAS  Google Scholar 

  26. Wu, S., & Zhang, Y. (2007). Nucleic Acids Research, 35, 3375–3382.

    Article  CAS  Google Scholar 

  27. Shi, J., Blundell, T. L., & Mizuguchi, K. (2001). Journal of Molecular Biology, 310, 243–257.

    Article  CAS  Google Scholar 

  28. Mizuguchi, K., Deane, C. M., Blundell, T. L., & Overington, J. P. (1998). Protein Science, 7, 2469–2471.

    Article  CAS  Google Scholar 

  29. Guex, N., & Peitsch, M. C. (1997). Electrophoresis, 18, 2714–2723.

    Article  CAS  Google Scholar 

  30. Walter, R. P., & Scott, P. H. (1999). Journal of Physical Chemistry, 103, 3596–3607.

    Article  Google Scholar 

  31. Laskowski, R. A., MacArthur, M. W., Moss, D. S., & Thornton, J. M. (1993). Journal of Applied Crystallography, 26, 283–291.

    Article  CAS  Google Scholar 

  32. Eisenberg, D., Luthy, R., & Bowie, J. U. (1997). Methods in Enzymology, 277, 396–404.

    Article  CAS  Google Scholar 

  33. Colovos, C., & Yeates, T. O. (1993). Protein Science, 2, 1511–1519.

    Article  CAS  Google Scholar 

  34. Pontius, J., Richelle, J., & Wodak, S. J. (1996). Journal of Molecular Biology, 264, 121–136.

    Article  CAS  Google Scholar 

  35. Dundas, J., Ouyang, Z., Tseng, J., Binkowski, A., Turpaz, Y., & Liang, J. (2006). Nucleic Acids Research, 34, W116–W118.

    Article  CAS  Google Scholar 

  36. Yang, J., Roy, A., & Zhang, Y. (2013). Nucleic Acids Research, 41, D1096–D1103.

    Article  CAS  Google Scholar 

  37. Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W., & Lip-man, D. J. (1997). Nucleic Acids Research, 25(17), 3389–3402.

    Article  CAS  Google Scholar 

  38. Smythe, A. B., Sanderson, M. J., & Nadler, S. A. (2006). Systematic Biology, 55(6), 972–992.

    Article  Google Scholar 

  39. Talavera, G., & Castresana, J. (2007). Systematic Biology, 56(4), 564–577.

    Article  CAS  Google Scholar 

  40. Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., Valentin, F., Wallace, I. M., Wilm, A., & Lopez, R. (2007). Bioinformatics, 23(21), 2947–2948.

    Article  CAS  Google Scholar 

  41. Castresana, J. (2000). Molecular Biology and Evolution, 17(4), 540–552.

    Article  CAS  Google Scholar 

  42. Nei, M., & Kumar, S. (2000). Molecular evolution and phylogenetics. New York: Oxford University Press.

    Google Scholar 

  43. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). Molecular Biology and Evolution, 28, 2731–2739.

    Article  CAS  Google Scholar 

  44. Pantazaki, A. A., Tsolkas, G. P., & Kyriakidis, D. A. (2008). Amino Acids, 34, 437–448.

    Article  CAS  Google Scholar 

  45. Koops, B. C., Verheij, H. M., Slotboom, A. J., & Egmond, M. R. (1999). Enzyme MicrobTechnol, 25, 622–631.

    Article  CAS  Google Scholar 

  46. Sellek, G. A., & Chaudhuri, J. B. (1999). Enzyme and Microbial Technology, 25, 471–482.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Mr. Sandeep Bhoye, Bruker-Daltronik, Bremen, Germany, for carrying out MALDI analysis. Pooja Attri is thankful to Kurukshetra University, Kurukshetra, for providing financial assistance in the form of University Research Scholarship (URS).

Conflict of Interest

The authors declare that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suman Dhanda.

Additional information

Pooja Attri and Tejinder P. Khaket have contributed equally to the manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Attri, P., Khaket, T.P., Jodha, D. et al. Biochemical, Kinetic, and In Silico Characterization of DING Protein Purified from Probiotic Lactic Acid Bacteria Pediococcus acidilactici NCDC 252. Appl Biochem Biotechnol 175, 1092–1110 (2015). https://doi.org/10.1007/s12010-014-1306-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1306-3

Keywords

Navigation