Skip to main content

Advertisement

Log in

Genomic analysis of Indian strains of Salmonella enterica subsp. enterica serovar Typhi indicates novel genetic repertoire for pathogenicity and adaptations

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

In the era of emerging antibiotic resistance, Salmonella enterica subsp. enterica serovar Typhi the causative agent of typhoid, is a threat for healthcare systems in developing countries especially India, where the disease is highly endemic. Genetic diversity among different strains may be the cause of variable severity of disease in different regions of the world. To explore this genetic diversity, genome annotation by rapid annotation using subsystem technology (RAST) was carried out for genomes of four Salmonella Typhi strains from two distinct areas available in the public domain. Two clinical strains were from India (P-stx-12 and E02-1180) and the other two strains considered as reference strains were from the endemic regions of Papua New Guinea (UJ308A and UJ816A). We report that Indian clinical strains possess several similar genes responsible for virulence and pathogenicity as those present in the reference strains. Interestingly, Indian clinical strains also possess 34 additional potential virulence genes that are absent in the reference strains, suggesting the more dreadful nature of Indian clinical strains as compared to those causing endemic typhoid. Indian strains contained genes coding for; Colicin V and bacteriocin production; multidrug resistance efflux pumps; ABC transporters; Type III and Type VI secretion systems, siderophore aerobactin, pathogenicity islands and Vi polysaccharide biosynthesis and transport. These unique genes are also reported in the genomes of other six clinical strains of India analyzed through RAST and IslandViewer 4 for validation purpose. This study highlights the presence of potential genes as molecular targets to overcome the future endemic outbreaks in India.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

ABC:

ATP-binding cassette

APEC:

Avian pathogenic E. coli

hvKP:

Hypervirulent Klebsiella pneumoniae

MDR:

Multidrug resistance

PNG:

Papua New Guinea

RAST:

Rapid annotation using subsystem technology

SPI:

Salmonella pathogenicity island

TTSS:

Type three secretion system

WGS:

Whole genome sequencing

WHO:

World Health Organization

XDR:

Extensively drug resistant

References

  1. Crump JA, Luby SP, Mintz ED (2004) The global burden of typhoid fever. Bull World Health Organ 82:346–353

    PubMed  PubMed Central  Google Scholar 

  2. Ochiai RL, Acosta CJ, Danovaro-Holliday MC, Baiqing D, Bhattacharya SK, Agtini MD et al (2008) A study of typhoid fever in five Asian countries: disease burden and implications for controls. Bull World Health Organ 86:260–268

    Article  PubMed  PubMed Central  Google Scholar 

  3. Buckle GC, Walker CL, Black RE (2012) Typhoid fever and paratyphoid fever: systematic review to estimate global morbidity and mortality for 2010. J Glob Health 2:010401

    Article  PubMed  PubMed Central  Google Scholar 

  4. Mogasale V, Maskery B, Ochiai RL, Lee JS, Mogasale VV, Ramani E et al (2014) Burden of typhoid fever in low-income and middle-income countries: a systematic, literature-based update with risk-factor adjustment. Lancet Glob Health 2:e570–e580

    Article  PubMed  Google Scholar 

  5. Lee JS, Mogasale VV, Mogasale V, Lee K (2016) Geographical distribution of typhoid risk factors in low and middle income countries. BMC Infect Dis 16:732

    Article  PubMed  PubMed Central  Google Scholar 

  6. Wong VK, Baker S, Pickard DJ, Parkhill J, Page AJ, Feasey NA et al (2015) Phylogeographical analysis of the dominant multidrug-resistant H58 clade of Salmonella Typhi identifies inter- and intracontinental transmission events. Nat Genet 47:632–639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pham Thanh D, Thompson CN, Rabaa MA, Sona S, Sopheary S, Kumar V et al (2016) The molecular and spatial epidemiology of typhoid fever in rural Cambodia. PLoS Negl Trop Dis 10:e0004785

    Article  PubMed  PubMed Central  Google Scholar 

  8. Techasaensiri C, Radhakrishnan A, Als D, Thisyakorn U (2018) Typhoidal Salmonella trends in Thailand. Am J Trop Med Hyg 99:64–71

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kavai SM, Kangogo M, Muigai AW, Kariuki S (2018) Analysis of trends in resistance to fluoroquinolones and extended spectrum beta-lactams among Salmonella Typhi isolates obtained from patients at four outpatient clinics in Nairobi County, Kenya. Adv Microbiol 8:578

    Article  CAS  Google Scholar 

  10. Eng S-K, Pusparajah P, Ab Mutalib N-S, Ser H-L, Chan K-G, Lee L-H (2015) Salmonella: a review on pathogenesis, epidemiology and antibiotic resistance. Front Life Sci 8:284–293

    Article  CAS  Google Scholar 

  11. Klemm EJ, Shakoor S, Page AJ, Qamar FN, Judge K, Saeed DK et al (2018) Emergence of an extensively drug-resistant Salmonella enterica serovar Typhi clone harboring a promiscuous plasmid encoding resistance to fluoroquinolones and third-generation cephalosporins. MBio 9:e00105-18

    Article  PubMed  PubMed Central  Google Scholar 

  12. Organization WH (2017) WHO publishes list of bacteria for which new antibiotics are urgently needed. WHO, Geneva

    Google Scholar 

  13. Zou Q-H, Li R-Q, Liu G-R, Liu S-L (2014) Comparative genomic analysis between typhoidal and non-typhoidal Salmonella serovars reveals typhoid-specific protein families. Infect Genet Evol 26:295–302

    Article  CAS  PubMed  Google Scholar 

  14. Hughes D, Andersson DI (2017) Environmental and genetic modulation of the phenotypic expression of antibiotic resistance. FEMS Microbiol Rev 41:374–391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chan K, Baker S, Kim CC, Detweiler CS, Dougan G, Falkow S (2003) Genomic comparison of Salmonella enterica serovars and Salmonella bongori by use of an S. enterica serovar typhimurium DNA microarray. J Bacteriol 185:553–563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. McClelland M, Sanderson KE, Clifton SW, Latreille P, Porwollik S, Sabo A et al (2004) Comparison of genome degradation in Paratyphi A and Typhi, human-restricted serovars of Salmonella enterica that cause typhoid. Nat Genet 36:1268–1274

    Article  CAS  PubMed  Google Scholar 

  17. Divyashree S, Nabarro LE, Veeraraghavan B, Rupali P (2016) Enteric fever in India: current scenario and future directions. Trop Med Int Health 21:1255–1262

    Article  CAS  PubMed  Google Scholar 

  18. Kanungo S, Dutta S, Sur D (2008) Epidemiology of typhoid and paratyphoid fever in India. J Infect Dev Ctries 2:454–460

    PubMed  Google Scholar 

  19. Banerjee T, Shukla BN, Filgona J, Anupurba S, Sen MR (2014) Trends of typhoid fever seropositivity over ten years in north India. Indian J Med Res 140:310–313

    PubMed  PubMed Central  Google Scholar 

  20. Chander AM, Nair RG, Kaur G, Kochhar R, Dhawan DK, Bhadada SK et al (2017) Genome insight and comparative pathogenomic analysis of Nesterenkonia jeotgali strain CD08_7 isolated from duodenal mucosa of celiac disease patient. Front Microbiol 8:129

    Article  PubMed  PubMed Central  Google Scholar 

  21. Chander AM, Kochhar R, Dhawan DK, Bhadada SK, Mayilraj S (2018) Genome sequence and comparative genomic analysis of a clinically important strain CD11-4 of Janibacter melonis isolated from celiac disease patient. Gut Pathog 10:2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kaur G, Chander AM, Kaur G, Maurya SK, Nadeem S, Kochhar R et al (2019) A genomic analysis of Mycobacterium immunogenum strain CD11_6 and its potential role in the activation of T cells against Mycobacterium tuberculosis. BMC Microbiol 19:64

    Article  PubMed  PubMed Central  Google Scholar 

  23. Chander AM, Kumari M, Kochhar R, Dhawan DK, Bhadada SK, Mayilraj S (2017) Genome sequence of Kocuria polaris strain CD08_4, an isolate from the duodenal mucosa of a celiac disease patient. Genome Announc 5:e01158-17

    Article  PubMed  PubMed Central  Google Scholar 

  24. Baddam R, Kumar N, Shaik S, Lankapalli AK, Ahmed N (2014) Genome dynamics and evolution of Salmonella Typhi strains from the typhoid-endemic zones. Sci Rep 4:7457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Baddam R, Thong KL, Avasthi TS, Shaik S, Yap KP, Teh CS et al (2012) Whole-genome sequences and comparative genomics of Salmonella enterica serovar Typhi isolates from patients with fatal and nonfatal typhoid fever in Papua New Guinea. J Bacteriol 194:5122–5123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ong SY, Pratap CB, Wan X, Hou S, Abdul Rahman AY, Saito JA et al (2012) Complete genome sequence of Salmonella enterica subsp. enterica serovar Typhi P-stx-12. J Bacteriol 194:2115–2116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA et al (2008) The RAST server: rapid annotations using subsystems technology. BMC Genom 9:75

    Article  CAS  Google Scholar 

  28. Brettin T, Davis JJ, Disz T, Edwards RA, Gerdes S, Olsen GJ et al (2015) RASTtk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci Rep 5:8365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ, Disz T et al (2014) The SEED and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res 42:D206–D214

    Article  CAS  Google Scholar 

  30. Bertelli C, Laird MR, Williams KP, Simon Fraser University Research Computing G, Lau BY, Hoad G et al (2017) IslandViewer 4: expanded prediction of genomic islands for larger-scale datasets. Nucleic Acids Res 45:30–35

    Article  CAS  Google Scholar 

  31. Saha R, Saha N, Donofrio RS, Bestervelt LL (2013) Microbial siderophores: a mini review. J Basic Microbiol 53:303–317

    Article  PubMed  Google Scholar 

  32. Chowdhury R, Sahu GK, Das J (1996) Stress response in pathogenic bacteria. J Biosci 21:149–160

    Article  CAS  Google Scholar 

  33. Soto SM (2013) Role of efflux pumps in the antibiotic resistance of bacteria embedded in a biofilm. Virulence 4:223–229

    Article  PubMed  PubMed Central  Google Scholar 

  34. Coyne S, Courvalin P, Perichon B (2011) Efflux-mediated antibiotic resistance in Acinetobacter spp. Antimicrob Agents Chemother 55:947–953

    Article  CAS  PubMed  Google Scholar 

  35. Nagakubo S, Nishino K, Hirata T, Yamaguchi A (2002) The putative response regulator BaeR stimulates multidrug resistance of Escherichia coli via a novel multidrug exporter system, MdtABC. J Bacteriol 184:4161–4167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Anderson S, Bankier AT, Barrell BG, de Bruijn MH, Coulson AR, Drouin J et al (1981) Sequence and organization of the human mitochondrial genome. Nature 290:457–465

    Article  CAS  PubMed  Google Scholar 

  37. Springer B, Kidan YG, Prammananan T, Ellrott K, Bottger EC, Sander P (2001) Mechanisms of streptomycin resistance: selection of mutations in the 16S rRNA gene conferring resistance. Antimicrob Agents Chemother 45:2877–2884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jack RW, Tagg JR, Ray B (1995) Bacteriocins of gram-positive bacteria. Microbiol Rev 59:171–200

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Riley MA, Wertz JE (2002) Bacteriocins: evolution, ecology, and application. Annu Rev Microbiol 56:117–137

    Article  CAS  PubMed  Google Scholar 

  40. Yang SC, Lin CH, Sung CT, Fang JY (2014) Antibacterial activities of bacteriocins: application in foods and pharmaceuticals. Front Microbiol 5:241

    PubMed  PubMed Central  Google Scholar 

  41. Gérard F, Pradel N, Wu L-F (2005) Bactericidal activity of colicin V is mediated by an inner membrane protein, SdaC, of Escherichia coli. J Bacteriol 187:1945–1950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cascales E, Buchanan SK, Duché D, Kleanthous C, Lloubes R, Postle K et al (2007) Colicin biology. Microbiol Mol Biol Rev 71:158–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Waters VL, Crosa JH (1991) Colicin V virulence plasmids. Microbiol Rev 55:437–450

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Šmajs D, Micenková L, Šmarda J, Vrba M, Ševčíková A, Vališová Z et al (2010) Bacteriocin synthesis in uropathogenic and commensal Escherichia coli: colicin E1 is a potential virulence factor. BMC Microbiol 10:288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Pattus F, Massotte D, Wilmsen H, Lakey J, Tsernoglou D, Tucker A et al (1990) Colicins: prokaryotic killer-pores. Experientia Basel 46:180–192

    CAS  Google Scholar 

  46. Arai M, Liu L, Fujimoto T, Setiawan A, Kobayashi M (2011) DedA protein relates to action-mechanism of halicyclamine A, a marine spongean macrocyclic alkaloid, as an anti-dormant mycobacterial substance. Mar Drugs 9:984–993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Stegh AH, Schickling O, Ehret A, Scaffidi C, Peterhansel C, Hofmann TG et al (1998) DEDD, a novel death effector domain-containing protein, targeted to the nucleolus. EMBO J 17:5974–5986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Garmory HS, Titball RW (2004) ATP-binding cassette transporters are targets for the development of antibacterial vaccines and therapies. Infect Immun 72:6757–6763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ge Y, Lee JH, Hu B, Zhao YF (2018) Loss-of-function mutations in the Dpp and Opp permeases render Erwinia amylovora resistant to kasugamycin and blasticidin S. Mol Plant Microbe Interact 31(8):823–832

    Article  PubMed  Google Scholar 

  50. Vander Broek CW, Stevens JM (2017) Type III secretion in the melioidosis pathogen Burkholderia pseudomallei. Front Cell Infect Microbiol 7:255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lin J, Cheng J, Chen K, Guo C, Zhang W, Yang X et al (2015) The icmF3 locus is involved in multiple adaptation-and virulence-related characteristics in Pseudomonas aeruginosa PAO1. Front Cell Infect Microbiol 5:70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kline KA, Dodson KW, Caparon MG, Hultgren SJ (2010) A tale of two pili: assembly and function of pili in bacteria. Trends Microbiol 18:224–232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ramos-Morales F (2012) Impact of Salmonella enterica type III secretion system effectors on the eukaryotic host cell. ISRN Cell Biol. https://doi.org/10.5402/2012/787934

    Article  Google Scholar 

  54. Hacker J, Blum-Oehler G, Muhldorfer I, Tschape H (1997) Pathogenicity islands of virulent bacteria: structure, function and impact on microbial evolution. Mol Microbiol 23:1089–1097

    Article  CAS  PubMed  Google Scholar 

  55. Hueck CJ (1998) Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol Mol Biol Rev 62:379–433

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Brown NF, Finlay BB (2011) Potential origins and horizontal transfer of type III secretion systems and effectors. Mob Genet Elements 1:118–121

    Article  PubMed  PubMed Central  Google Scholar 

  57. Ehrbar K, Hardt WD (2005) Bacteriophage-encoded type III effectors in Salmonella enterica subspecies 1 serovar Typhimurium. Infect Genet Evol 5:1–9

    CAS  PubMed  Google Scholar 

  58. Mirold S, Rabsch W, Tschape H, Hardt WD (2001) Transfer of the Salmonella type III effector sopE between unrelated phage families. J Mol Biol 312:7–16

    Article  CAS  PubMed  Google Scholar 

  59. Juhas M, Crook DW, Hood DW (2008) Type IV secretion systems: tools of bacterial horizontal gene transfer and virulence. Cell Microbiol 10:2377–2386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Christie PJ, Cascales E (2005) Structural and dynamic properties of bacterial type IV secretion systems (review). Mol Membr Biol 22:51–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ling J, Pan H, Gao Q, Xiong L, Zhou Y, Zhang D et al (2013) Aerobactin synthesis genes iucA and iucC contribute to the pathogenicity of avian pathogenic Escherichia coli O2 strain E058. PLoS ONE 8:e57794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Russo TA, Olson R, MacDonald U, Beanan J, Davidson BA (2015) Aerobactin, but not yersiniabactin, salmochelin, or enterobactin, enables the growth/survival of hypervirulent (hypermucoviscous) Klebsiella pneumoniae ex vivo and in vivo. Infect Immun 83:3325–3333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. J-i Wachino, Arakawa Y (2012) Exogenously acquired 16S rRNA methyltransferases found in aminoglycoside-resistant pathogenic Gram-negative bacteria: an update. Drug Resist Updates 15:133–148

    Article  CAS  Google Scholar 

  64. Macmaster R, Zelinskaya N, Savic M, Rankin CR, Conn GL (2010) Structural insights into the function of aminoglycoside-resistance A1408 16S rRNA methyltransferases from antibiotic-producing and human pathogenic bacteria. Nucleic Acids Res 38:7791–7799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Aguirre AA, Vicente AM, Hardwick SW, Alvelos DM, Mazzon RR, Luisi BF et al (2017) Association of the cold shock DEAD-box RNA helicase RhlE to the RNA degradosome in Caulobacter crescentus. J Bacteriol 199:e00135-00117

    Article  Google Scholar 

  66. Netterling S, Bareclev C, Vaitkevicius K, Johansson J (2016) RNA helicase important for Listeria monocytogenes hemolytic activity and virulence factor expression. Infect Immun 84:67–76

    Article  CAS  PubMed  Google Scholar 

  67. Wetter M, Coulding D, Pickard D, Kowarik M, Waechter CJ, Dougan G, Wacker M (2012) Molecular characterization of the viaB locus encoding the biosynthetic machinery for Vi capsule formation in Salmonella Typhi. PLoS ONE 7:e45609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Liston SD, Ovchinnikova OG, Whitfield C (2016) Unique lipid anchor attaches Vi antigen capsule to the surface of Salmonella enterica serovar Typhi. Proc Natl Acad Sci USA A113:6719–6724

    Article  CAS  Google Scholar 

  69. Tran QT, Gomez G, Khare S, Lawhon SD, Raffatellu M, Baumler AJ, Ajithdoss D, Dhavalas S, Adams LG (2010) The Salmonella enterica serovar Typhi Vi capsular antigen is expressed after the bacterium enters the ileal mucosa. Infect Immun 78:527–535

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shanmugam Mayilraj or Praveen Rishi.

Ethics declarations

Conflict of interest

All authors have approved the final draft of the manuscript and declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sekhon, P.K., Chander, A.M., Mayilraj, S. et al. Genomic analysis of Indian strains of Salmonella enterica subsp. enterica serovar Typhi indicates novel genetic repertoire for pathogenicity and adaptations. Mol Biol Rep 46, 3967–3989 (2019). https://doi.org/10.1007/s11033-019-04843-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-019-04843-2

Keywords

Navigation