Skip to main content
Log in

Stress response in pathogenic bacteria

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Bacterial pathogens survive under two entirely different conditions, namely, their natural environment and in their hosts. Response of these pathogens to stresses encountered during transition from the natural environment to human hosts has been described. The virulence determinants of pathogenic bacteria are under the control of transcriptional activators which respond to fluctuations in growth temperature, osmolarity, metal ion concentration and oxygen tension of the environment. The regulation of stress induced genes may occur at the level of transcription or translation or by post-translational modifications. Under certain stress conditions local changes in the superhelicity of DNA induce or repress genes. In addition to their role in survival of bacteria under stressful situations, the stress induced proteins are also implicated in the manifestation of pathogenicity of bacterial pathogensin vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abshire K Z and Neidhardt F C 1993 Analysis of proteins synthesized bySalmonella typhimurium during growth within a host macrophage;J. Bacteriol. 175 3734–3743

    PubMed  CAS  Google Scholar 

  • Albright L M, Huala E and Ausubel F M 1989 Prokaryotic signal transduction mediated by sensor and regulator protein pairs;Annu. Rev. Genet. 23 311–336

    Article  PubMed  CAS  Google Scholar 

  • Allan B, Linseman M, MacDonald L A, Lam J S and Kropinski A M 1988 Heat shock response ofPseudomonas aeruginosa;J. Bacteriol. 170 3668–3674

    PubMed  CAS  Google Scholar 

  • Barve S S and Straley S C 1990IcrR, a low Ca2+ response locus with Ca2+ dependent functions inYersinia Pestis;J. Bacteriol. 172 4661–4671

    PubMed  CAS  Google Scholar 

  • Beattie D T, Shahin R and Mekalanos J J 1992 A vir-repressed gene ofBordetella pertussis is required for virulence;Infect. Immun 60 571–577

    PubMed  CAS  Google Scholar 

  • Bernardini M L, Fontaine A and Sansonetti P J 1990 The two component regulatory system OmpR-EnvZ controls the virulence ofShigella flexineri;J. Bacteriol. 172 6274–6281

    PubMed  CAS  Google Scholar 

  • Bernardini M L, Sanna M G, Fontaine F and Sansonetti P J 1993 OmpC is involved in invasion of epithelial cells byShigella flexineri;Infect Immun. 61 3625–3635

    PubMed  CAS  Google Scholar 

  • Bjorn M J, Iglewski B H, Ives S K, Sadoff J C and Vasil M L 1978 Effect of iron on yields of exotoxin A in culturesof Pseudomonas aeruginosa PA-103;Infect. Immun. 19 785–791

    PubMed  CAS  Google Scholar 

  • Blander S J and Horwitz M A 1993 Major cytoplasmic membrane protein ofLegionella pneumophila,a genus common antigen and member of the hsp60 family of heat shock proteins induces protective immunity in a guinea pig model of Legionnaires disease;J. Clin. Invest. 91 717–723

    Article  PubMed  CAS  Google Scholar 

  • Boyd J, Oso M N and Murphy J R 1990 Molecular cloning and DNA sequence analysis of a diphtheria tox iron-dependent regulatory element (dtxR) fromCorynebacterium diphtheriae;Proc. Natl. Acad. Sci. USA 87 5968–5972

    Article  PubMed  CAS  Google Scholar 

  • Buchmeir N A and Heffron F 1990 Induction ofSalmonella stress proteins upon infection of macrophages,Science 248 730–732

    Article  Google Scholar 

  • Bukau B 1993 Regulation of theEscherichia coli heat-shock response;Mol. Microbiol. 9 671–680

    Article  PubMed  CAS  Google Scholar 

  • Bullen J J 1973 The significance of iron in infection;Rev. Infect. Dis. 3 1127–1138

    Google Scholar 

  • Calderwood S B and Mekalanos J J 1987 Iron regulation of Shiga like toxin expression inE. coli is mediated bythe fur locus;J. Bacteriol. 169 4759–4764

    PubMed  CAS  Google Scholar 

  • Calderwood S B and Mekalanos J J 1988 Confirmation of the Fur operator site by insertion of a synthetic oligonucleotide into an operon fusion plasmid;J. Bacterio1. 170 1015–1017

    CAS  Google Scholar 

  • Camilli A, Beattie D T and Mekalanos J J 1994 Use of genetic recombination as a reporter of gene expression;Proc. Natl. Acad. Sci. USA 91 2634–2638

    Article  PubMed  CAS  Google Scholar 

  • Carreiro M M, Laux D C and Nelson D R 1990 Characterization of the heat shock response and identification of heat shock protein antigens ofBorrelia burgdorferi;Infect. Immun. 58 2186–2191

    PubMed  CAS  Google Scholar 

  • Chatfield S N, Dorman C J, Hayward C and Dougan G 1991 Role of ompR dependent genes inSalmonella typhimurium virulence: mutants deficient in both OmpC and OmpF are attenuatein vivo;Infect. Immun. 59 449–452

    PubMed  CAS  Google Scholar 

  • Chippaux M, Bonnefoy V, Ratouchniak J and Pascal M C 1982 Operon fusion in the nitrate reductase operon and study of the control of nirR inEscherichia coli;Mol. Gen. Genet. 182 477–479

    Article  Google Scholar 

  • Cluss R G and Boothby J T 1990 Thermoregulation of protein synthesis inBorrelia burgdorferi;Infect. Immun. 58 1038–1042

    PubMed  CAS  Google Scholar 

  • Cornelis G, Shuters C, de Rouvroit C L and Michiels T 1989 Homology between VirF, the transcriptional activator of theYersinia virulence regulon, and AraC, theEscherikhia coli arbinose operon regulator,J. Bacteriol. 171 254–263

    PubMed  CAS  Google Scholar 

  • Cotter P A, Chepuri V, Gennis R B and Gunsalus R P 1990 Cytochrome o(cyoABCDE) andd(cydAB) oxidase gene expression inEscherichia coli is regulated by oxygen, pH and thefnr gene product;J. Bacteriol. 172 6333–6338

    PubMed  CAS  Google Scholar 

  • Cotter P A and Gunsalus R P 1989 Oxygen, nitrate and molybdenum regulation of dmsABC gene expression inEscherichia coli;J. Bacteriol. 171 3817–3823

    PubMed  CAS  Google Scholar 

  • Cotter P A and Gunsalus R P 1992 Contribution of thefnr and arcA gene products in coordinate regulation of the cytochrome o (cyo ABCDE) and d (cyd AB) oxidase genes inEscherichia coli;FEMS Microbiol. Lett. 91 31–36

    Article  CAS  Google Scholar 

  • Craig E 1993 Heat shock proteins: Molecular chaperones of protein biogenesis;Microbiol. Rev. 57 402–414

    PubMed  CAS  Google Scholar 

  • Craig E and Gross C 1991 Is hsp70 the cellular thermometer?;Trends Biochem. Sci. 16 135–140

    Article  PubMed  CAS  Google Scholar 

  • Deretic V, Dikshit R, Konyessni W M, Chakraborty A M and Misra T K 1989 The algR gene, which regulates mucoidy inPseudomonas aeruginosa belongs to a class of environmentally responsive genes;J. Bacteriol. 171 1278–1283

    PubMed  CAS  Google Scholar 

  • Deretic V, Mohr C D and Martin D W 1991 MucoidPseudomonas aeruginosa in cystic fibrosis: Signal transduction and histone like elements in the regulation of bacterial virulence;Mol. Microbiol. 5 1577–1583

    Article  PubMed  CAS  Google Scholar 

  • Dorman C J 1991 DNA supercoiling and environmental regulation of gene expression in pathogenic bacteria;Infect. Immun. 59 745–749

    PubMed  CAS  Google Scholar 

  • Dorman C J, Chatfield S, Higgins C F, Hayward C and Dougan G 1989 Characterization of porin and ompR mutants of a virulent strain ofSalmonella typhimurium: ompR mutants are attenuatedin vivo;Infect Immun. 57 2136–2140

    PubMed  CAS  Google Scholar 

  • Erickson J W and Gross C A 1989 Identification of the σE subunit ofEscherichia coli RNA polymerase: a second alternate σ factor involved in high-temperature gene expression;Genes Dev. 3 1462–1471

    Article  PubMed  CAS  Google Scholar 

  • Ernst J F, Bennett R L and Rothfield L I 1978 Constitutive expression of the iron enterochelin and ferrichrome uptake system in a mutant strain ofSalmonella typhimurium;J. Bacteriol. 135 928–934

    PubMed  CAS  Google Scholar 

  • Galan J E and Curtiss R III 1990 Expression ofSalmonella typhimurium genes required for invasion is regulated by changes in DNA supercoiling;Infect. Immun. 58 1879–1885

    PubMed  CAS  Google Scholar 

  • Garvin L D and Hardies G C 1989 Nucleotide sequence for the htpR gene fromCitrobacter freundii;Nucleic Acids Res. 17 4889

    Article  PubMed  CAS  Google Scholar 

  • Goldberg M B, Boyko S A and Calderwood S B 1990a Positive transcriptional regulation of an iron regulated virulence gene ofVibrio cholerae;Proc. Natl. Acad. Sci. USA 88 1125–1129

    Article  Google Scholar 

  • Goldberg M B, Boyko S A and Calderwood S B 1990b Transcriptional regulation by iron of aVibrio cholerae virulence gene and homology of the gene to theEscherichia coli Fur system;J. Bacteriol. 172 6863–6870

    PubMed  CAS  Google Scholar 

  • Graeme-Cook K A, May G, Bremer E and Higgins C F 1989 Osmotic regulation of porin expression: a role for DNA supercoiling;Mol. Microbiol. 3 1287–1294

    Article  PubMed  CAS  Google Scholar 

  • Henderson D P and Payne S M 1994Vibrio cholerae iron transport systems: Roles of heme and siderophore iron transport in virulence and identification of a gene associated with multiple iron transport systems;Infect Immun. 62 5120–5125

    PubMed  CAS  Google Scholar 

  • Hoe N P, Minion F C and Goguen J D 1992 Temperative sensing inYersenia pestis: Regulation of yopE transcription by lcrF;J. Bacteriol. 174 4275–4286

    PubMed  CAS  Google Scholar 

  • Isberg R R, Swain A and Falkow S 1988 Analysis of expression and thermoregulation of theYersinia pseudotuberculosis inv gene with hybrid proteins;Infect. Immun. 56 2133–2138

    PubMed  CAS  Google Scholar 

  • Iuchi S and Lin E C C 1991 Adaptation ofEscherichia coli to respiratory conditions: Regulation of gene expression;Cell 66 5–7

    Article  PubMed  CAS  Google Scholar 

  • Jones B D and Falkow S 1994 Identification and characterization of aSalmonella typhimurium oxygen regulated gene required for bacterial internalization;Infect. Immun. 62 3745–3752

    PubMed  CAS  Google Scholar 

  • Jones H M and Gunsalus R P 1987 Regulation ofEscherichia coli fumarate reductasefrdABCD operon expression by respiratory electron acceptors andthe fur gene product;J. Bacteriol. 169 3340–3349

    PubMed  CAS  Google Scholar 

  • Kaufman S H E, Schoel B, Embdes J D A V, Koga T, Wand-Wurttinberger A, Munk M E and Steinhuff U 1991 Heat shock protein 60: Implications for pathogenesis of and protection against bacterial infections:Immun. Rev. 121 67–90

    Article  Google Scholar 

  • Lambden P R and Guest J R 1976 Mutants ofEscherichia coli K12 unable to use fumarate as an anaerboic electron acceptor;J. Gen. Microbiol. 97 145–160

    PubMed  CAS  Google Scholar 

  • Landick R, Vaughn V, Lau E T, Van Bogelen R A, Erickson J W and Neidhart F C 1984 Nucleotide sequence of the heat shock regulatory gene ofE. coli suggests its protein product may be a transcription factor;Cell 38 175–182

    Article  PubMed  CAS  Google Scholar 

  • Litwin C M, Boyko S A and Calderwood S B 1992 Cloning, sequencing and transcriptional regulation of theVibrio cholerae fur gene;J. Bacteriol. 174 1897–1903

    PubMed  CAS  Google Scholar 

  • Looney R J and Steigbigel R J 1986 Role of the Vi antigen ofSalmonella typhimurium in resistance to host defensein vitro;J. Lab. Clin. Med. 108 506–516

    PubMed  CAS  Google Scholar 

  • Maurelli A T 1989 Temperature regulation of virulence genes is pathogenic bacteria: a general strategy for human pathogens;Microb. Pathog. 7 1–10

    Article  PubMed  CAS  Google Scholar 

  • Miller S I and Mekalanos J J 1990 Constitutive expression of the phoP regulon attenuatesSalmonella virulence and survival within macrophages;J. Bacteriol. 172 2485–2490

    PubMed  CAS  Google Scholar 

  • Miller V L and Mekalanos J J 1988 A novel suicide vector and its use in construction of insertion mutations: Osmoregulation of outer membrane proteins and virulence determinants inVibrio cholerae requires toxR;J. Bacteriol. 170 2575–2583

    PubMed  CAS  Google Scholar 

  • Miller V L, Taylor R K and Mekalanos J J 1987 Cholera toxin transcriptional activator ToxR is a transmembrane DNA binding protein;Cell 48 271–279

    Article  PubMed  Google Scholar 

  • Murray P G and Young R A 1992 Stress and immunological recognition in host pathogen interactions;J. Bacteriol. 174 4193–4196

    PubMed  CAS  Google Scholar 

  • Nakahigashi K, Yanagi H and Yura T 1995 Isolation and sequence analysis of rpoH genes encoding σ32 homologs from gram negative bacteria: conserved mRNA protein segments for heat shock regulation;Nucleic Acid. Res. 23 4383–4390

    PubMed  CAS  Google Scholar 

  • Parkinson J S and Kofoid E C 1992 Communication modules in bacterial signaling proteins;Annu. Rev. Genet. 26 71–112

    Article  PubMed  CAS  Google Scholar 

  • Parsot C and Mekalanos J J 1990 Expression of ToxR, the transcriptional activator of the virulence factors inVibrio cholerae, is modulated by the heat shock response;Proc. Natl. Acad. Sci. USA 87 9898–9902

    Article  PubMed  CAS  Google Scholar 

  • Pickard D, Li J, Roberts M, Maskell D, Hone D, Levine M, Dougan G and Chatfield S 1994 Characterisation of defined ompR mutants ofSalmonella typhimurium: ompR is involved in the regulation of Vi poly saccharide expression;Infect. Immun. 62 3984–3993

    PubMed  CAS  Google Scholar 

  • Pierson D E and Falkow S 1990 Nonpathogenic isolates ofYersinia enterocolitica do not contain functional inv-homologous sequences;Infect. Immun. 58 1059–1064

    PubMed  CAS  Google Scholar 

  • Poole K and Braun V 1988 Iron regulation ofSerratia marcescens hemolysin gene expression;Infect. Immun. 56 2967–2971

    PubMed  CAS  Google Scholar 

  • Raina S, Missiakas D and Georopoulos C 1995 The rpoE gene encoding the σE24) heat sock sigma factor ofEscherichia coli;EMBO J. 14 1043–1055

    PubMed  CAS  Google Scholar 

  • Retzlaff C, Yamamoto Y, Hoffman P S, Friedman H and Klein T W 1994 Bacterial heat shock proteins directly induce cytokine mRNA and interleukin I secretion in macrophage cultures;Infect. Immun. 62 5689–5693

    PubMed  CAS  Google Scholar 

  • Rouviere P E, Las Penas A D, Mecsas J, Lu C Z, Rudd K E and Gross C A 1995 rpoE, the gene encoding the second heat shock sigma factor, σE, inEscherichia coli;EMBO J. 14 1032–1042

    PubMed  CAS  Google Scholar 

  • Roy N K, Das G, Balganesh T S, Dey S N, Ghosh R K and Das J 1982 Enterotoxin production, DNA repair and alkaline phosphatase ofVibrio cholerae before and after animal passage;J. Gen. Microbiol. 128 1927–1932

    PubMed  CAS  Google Scholar 

  • Sahu G K, Chowdhury R and Das J 1994 Heat shock response and heat shock protein antigens ofVibrio cholerae;Infect. Immun. 62 5624–5631

    PubMed  CAS  Google Scholar 

  • Schaffer S, Hantke Kand Braun V 1985 Nucleotide sequence of the iron regulatory genefur;Mol. Gen. Genet 200 110–113

    Article  PubMed  CAS  Google Scholar 

  • Shinnick T M 1991 Heat shock proteins as antigens of bacterial and parasitic pathogens;Curr, Top, Microbiol. lmmunol. 167 145

    CAS  Google Scholar 

  • Silva C L and Lowrie D B 1994 A single mycobacterial proteinshsp65 expressed by a transgenic antigen presenting cell vaccinates mice against tuberculosis;Immunology 82 244–248

    PubMed  CAS  Google Scholar 

  • Sokolovic Z, Fuchs A and Goebel W 1990 Synthesis of species specific stress proteins by virulent strains ofListera monocytogens;Infect. Immun. 58 3583–3587

    Google Scholar 

  • Staggs T M and Perry R D 1991 Complementation of theEscherichia coli Fur phenotype byYersinia pestis fur, H-36,Abstr. 91st Gen. Meet. Am. Soc. Microbiol, p 161

  • Stewart V 1982 Requirement of Fnr and NarL functions for nitrate reductase expression inEscherichia coli K-12;J. Bacteriol. 151 1320–1325

    PubMed  CAS  Google Scholar 

  • Stoebner J A and Payne S M 1988 Iron regulated hemolysin production and utilisation of heme and hemoglobin byVibrio cholerae;Infect Immun. 56 2891–2895

    PubMed  CAS  Google Scholar 

  • Strauss E J 1995 When a turn off is a turn on;Curr. Biol. 5 706–709

    Article  PubMed  CAS  Google Scholar 

  • Tobe T, Nagai S, Okada N, Adler B, Yoshikawa M and Sasakawa C 1991 Temperature regulated expression of invasion genes inShigella flexneri is controlled through the transcriptional activation of the vir6 gene on the large plasmid;Mol. Microbiol,5 887–893

    Article  PubMed  CAS  Google Scholar 

  • Tomoyasu T, Gamer Bukau B, Kanemori M, Mori H, Rutman A J, Oppenheim A B, Yura T, Yamanaka K, Niki Hiraga S and Ogura T 1995E, coli FtsH is a membrane bound ATP-dependent protease which degrades the heat shock transcription factor, σ32;EMBO J. 14 2551–2560

    PubMed  CAS  Google Scholar 

  • Wachter M L, Domann E and Chakraborty T 1992 The expression of virulence genes inListeria monocytogenes is thermoregulated;J. Bacteriol. 174 947–952

    Google Scholar 

  • Young D B and Garbe T R 1991 Heat shock proteins and antigens ofMycobacterium tuberculosis;Infect. Immun. 59 3086–3093

    PubMed  CAS  Google Scholar 

  • Yura T, Nagai H and Mori H 1993 Regulation of the heat shock response in bacteria;Annu. Rev. Microbiol. 47 321–350

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jyotirmoy Das.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chowdhury, R., Sahu, G.K. & Das, J. Stress response in pathogenic bacteria. J Biosci 21, 149–160 (1996). https://doi.org/10.1007/BF02703105

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02703105

Keywords

Navigation