Skip to main content

Advertisement

Log in

Transcript profiling and gene expression analysis under drought stress in Ziziphus nummularia (Burm.f.) Wright & Arn.

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Drought is one of the prime abiotic stresses responsible for limiting agricultural productivity. A number of drought responsive genes have been isolated and functionally characterized but these studies have been restricted to a few model plant systems. Very few drought responsive genes have been reported till date from non model drought tolerant plants. The present study aimed at identifying differentially expressed genes from a drought tolerant, non-model plant, Ziziphus nummularia (Burm.f.) Wight & Arn. One month old seedlings of Z. nummularia were subjected to drought stress by 30% Polyethylene glycol (PEG 6000) treatment for 6, 12, 24, 48 and 72 h. A significant reduction in RWC and increase in proline was observed at 24 h and 48 h of treatment. Suppression subtractive hybridization (SSH) library was constructed with drought stressed seedlings after 24 h and 48 h of PEG 6000 treatment. A total of 142 and 530 unigenes from 24 h and 48 h library were identified respectively. Gene ontology studies revealed that about 9.78% and 15.07% unigenes from 24 h and 48 h SSH libraries were expressed in “response to stress”. Fifteen putative drought responsive genes identified in SSH library were validated for drought responsive differential expression by RT-qPCR. Significant changes in fold expressions were observed with time in the treated samples compared to the control. A heat map revealing the expression profile of genes was constructed by hierarchical clustering. Various genes identified in SSH libraries can serve as a resource for marker discovery and selection of candidate genes to improve drought tolerance in other susceptible crops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Begg JE (1980) Adaptation of plants to water and high temperature stress. Wiley, New York, pp 33–42

    Google Scholar 

  2. Bhandari MM, Bhansali AK (2000) Rhamnaceae. In: Singh NP, Vohra JN, Hajra PK, Singh DK (eds) Flora of India vol-5 Olacaceae- Connaraceae. Botanical Survey of India, Calcutta, pp 163–245

    Google Scholar 

  3. Clifford SC, Arndt SK, Corlett JE, Joshi S, Sankhla N, Popp M, Jones HG (1998) The role of solute accumulation, osmotic adjustment and changes in cell wall elasticity in drought tolerance in Ziziphus mauritiana (Lamk.). J Exp Bot 49:967–977

    Article  Google Scholar 

  4. Arndt S, Clifford S, Wanek W, Jones H, Popp M (2001) Physiological and morphological adaptations of the fruit tree Ziziphus rotundifolia in response to progressive drought stress. Tree Physiol 21:705‒715

    Article  Google Scholar 

  5. Orwa C, Mutua A, Kindt R, Jamnadass R, Simons A (2009) Agroforestree Database: a tree reference and selection guide version 4.0. http://www.worldagroforestry.org/af/treedb

  6. Pareek OP (1988) Arid zone fruit research in India. Indian J Agric Sci 68:508–514

    Google Scholar 

  7. Hammer K, Heller J, Engels J (2001) Monographs on underutilized and neglected crops. Genet Resour Crop Evol 48:3–5

    Article  Google Scholar 

  8. Kala S, Godara AK, Sehrawat SK (2007) Leaf chlorophyll content and electrolyte leakage in Ziziphus species under moisture stress. Haryana J Hort Sci 36:217–218

    CAS  Google Scholar 

  9. Yadav R, Verma OP, Padaria JC (2014) Modified CTAB protocol for genomic DNA extraction from mature leaves of Ziziphus nummularia. Res J Biotechnol 9(4):43–47

    CAS  Google Scholar 

  10. Padaria JC, Yadav R, Tarafdar A, Lone SA, Kumar K, Sivalingam PN (2016) Molecular cloning and characterization of drought stress responsive abscisic acid-stress-ripening (Asr 1) gene from wild jujube, Ziziphus nummularia (Burm.f.) Wight & Arn. Mol Biol Rep 43(8):849–859

    Article  CAS  PubMed  Google Scholar 

  11. Vos P, Hogers R, Bleeker M, Reijans M, Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cho YJ, Meade JD, Walden JC, Chen X (2001) Multicolor fluorescent differential display. Biotechnol J 30:562–572

    CAS  Google Scholar 

  13. Hubank M, Schatz DG (1994) Identifying differences in mRNA expression by representational difference analysis of cDNA. Nucleic Acids Res 22:5640–5648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Diatchenko L, Lau YF, Campbell AP, Chenchik A, Moqadam F, Huang B, Lukyanov S, Lukyanov K, Gurskaya N, Sverdlov ED, Siebert PD (1996) Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc Natl Acad Sci USA 93:6025–6030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Xiong L, Lee MW, Qi M, Yang Y (2001) Identification of defense-related rice genes by suppression subtractive hybridization and differential screening. Mol Plant-Microbe Interact 14:685–692

    Article  CAS  PubMed  Google Scholar 

  16. Mishra RN, Ramesha A, Kaul T, Nair S, Sopory SK, Reddy MK (2005) A modified cDNA subtraction to identify differentially expressed genes from plants with universal application to other eukaryotes. Anal Biochem 345:149–157

    Article  CAS  PubMed  Google Scholar 

  17. Barrs HD, Weatherley PE (1962) A re-examination of the relative turgidity technique for estimating water deficits in leaves. Aust J Biol Sci 15:413–428

    Article  Google Scholar 

  18. Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  19. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  20. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2–∆∆ct method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  21. Sun HF, Meng YP, Cui GM, Cao QF, Li J, Liang AH (2009) Selection of housekeeping genes for gene expression studies on the development of fruit bearing shoots in Chinese jujube (Ziziphus jujube Mill.). Mol Biol Rep 36:2183–2190

    Article  CAS  PubMed  Google Scholar 

  22. Zimmermann P, Hirsch-Hoffmann M, Hennig L, Gruissem W (2004) GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. Plant Physiol 136(1):2621–2632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sinclair TR, Ludlow MM (1986) Influence of soil water supply on the plant water balance of four tropical grain legumes. Aust J Plant Physiol 13:329–341

    Article  Google Scholar 

  24. Yuan S, Liu WJ, Zhang NH, Wang MB, Liang HG, Lin HH (2005) Effects of water stress on major photosystem II gene expression and protein metabolism in barley leaves. Physiol Plant 125:464–473

    Article  CAS  Google Scholar 

  25. Zgallai H, Steppe K, Lemeur R (2005) Photosynthetic, physiological and biochemical responses of tomato plants to polyethylene glycol- induced water deficit. J Integr Plant Biol 47:1470–1478

    Article  CAS  Google Scholar 

  26. Kumar RR, Karajol K, Naik GR (2011) Effect of polyethylene glycol induced water stress on physiological and biochemical responses in pigeonpea (Cajanus cajan L. Millsp.). Recent res sci technol 3:148–152

    Google Scholar 

  27. Choudhary M, Padaria JC (2016) Transcriptional profiling in pearl millet (Pennisetum glaucum L.R. Br.) for identification of differentially expressed drought responsive genes. Physiol Mol Biol Plants 21(2):187–196

    Article  Google Scholar 

  28. Ghorbanli M, Gafarabad M, Amirkian T, Mamaghani BA (2013) Investigation of proline, total protein, chlorophyll, ascorbate and dehydro ascorbate changes under drought stress in Akria and Mobil tomato cultivars. Iran J Plant Physiol 3(2):651–658

    Google Scholar 

  29. Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Physiol 53:247–273

    CAS  Google Scholar 

  30. Seki M, Narusaka M, Ishida J, Nanjo T, Fujita M, Oono Y, Kamiya A, Nakajima M, Enju A, Sakurai T (2002) Monitoring the expression profiles of 7,000 Arabidopsis genes under drought, cold and high salinity stresses using a full-length cDNA microarray. Plant J 31:279–292

    Article  CAS  PubMed  Google Scholar 

  31. Luchi S, Kobayashi M, Taji T, Naramoto M, Seki M, Kato T, Tabata S, Kakubari Y, Yamaguchi-Shinozaki K, Shinozaki K (2001) Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis. Plant J 27:325–333

    Article  Google Scholar 

  32. Tran LS, Quach TN, Guttikonda SK, Aldrich DL, Kumar R, Neelakandan A, Valliyodan B, Nguyen HT (2009) Molecular characterization of stress-inducible GmNAC genes in soybean. Mol Genet Genomics 281:647–664

    Article  CAS  PubMed  Google Scholar 

  33. Huang J, Yang X, Wang MM, Tang HJ, Ding LY, Shen Y, Zhang HS (2007) A novel rice C2H2-type zinc finger protein lacking DLN-box/EAR motif plays a role in salt tolerance. Biochim Biophys Acta 1769:220–227

    Article  CAS  PubMed  Google Scholar 

  34. Huang J, Sun SJ, Xu DQ, Yang X, Bao YM, Wang ZF, Tang HJ, Zhang HS (2009) Increased tolerance of rice to cold, drought and oxidative stresses mediated by the overexpression of a gene that encodes the zinc finger protein ZFP245. Biochem Biophys Res Commun 389:556–561

    Article  CAS  PubMed  Google Scholar 

  35. Huang J, Sun S, Xu D, Lan H, Sun H, Wang Z, Bao Y, Wang J, Tang H, Zhang H (2012) A TFIIIA-type zinc finger protein confers multiple abiotic stress tolerances in transgenic rice (Oryza sativa L.). Plant Mol Biol 80:337–350

    Article  CAS  PubMed  Google Scholar 

  36. Xu DQ, Huang J, Guo SQ, Yang X, Bao YM, Tang HJ, Zhang HS (2008) Overexpression of a TFIIIA-type zinc finger protein gene ZFP252 enhances drought and salt tolerance in rice (Oryza sativa L.). FEBS Lett 582:1037–1043

    Article  CAS  PubMed  Google Scholar 

  37. Sun SJ, Guo SQ, Yang X, Bao YM, Tang HJ, Sun H, Huang J, Zhang HS (2010) Functional analysis of a novel Cys2/His2-type zinc finger protein involved in salt tolerance in rice. J Exp Bot 61:2807–2818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Li J, Ban L, Wen H, Wang Z, Dzyubenko N, Chapurin V, Gao H, Wang X (2015) An aquaporin protein is associated with drought stress tolerance. Biochem Biophys Res Commun 459:208–213

    Article  CAS  PubMed  Google Scholar 

  39. Singh R, Pandey N, Naskar J, Shirke PA (2015) Physiological performance and differential expression profiling of genes associated with drought tolerance in contrasting varieties of two Gossypium species. Protoplasma 252:423–438

    Article  CAS  PubMed  Google Scholar 

  40. Choudhary NL, Sairam RK, Tyagi A (2005) Expression of ∆1-pyrroline-5-carboxylate synthetase gene during drought in rice (Oryza sativa L.). Indian J Biochem Biophys 42:366–370

    CAS  PubMed  Google Scholar 

  41. Wei K, Wang Y, Zhong X, Pan S (2014) Protein kinase structure, expression and regulation in maize drought signaling. Mol Breed 34:583–602

    Article  CAS  Google Scholar 

  42. Ke Y, Han G, He H, Li J (2009) Differential regulation of proteins and phosphoproteins in rice under drought stress. Biochem Biophys Res Commun 379:133–138

    Article  CAS  PubMed  Google Scholar 

  43. Li J, Tax FE (2013) Receptor-like kinases: key regulators of plant development and defense. J Integr Plant Biol 55:1184–1187

    Article  CAS  PubMed  Google Scholar 

  44. Zhang X, Yang G, Shi R, Han X, Qi L, Wang R, Xiong L, Li G (2013) Arabidopsis cysteine-rich receptor-like kinase 45 functions in the responses to abscisic acid and abiotic stresses. Plant Physiol Biochem 67:189–198

    Article  CAS  PubMed  Google Scholar 

  45. Wu Y, Wei W, Pang X, Wang X, Zhang H, Dong B, Xing Y, Li X, Wang M (2014) Comparative transcriptome profiling of a desert evergreen shrub, Ammopiptanthus mongolicus, in response to drought and cold stresses. BMC Genom 15:671

    Article  Google Scholar 

  46. Bailey-serres J (1998) Selective translation of cytoplasmic mRNAs in plants. Trends Plant Sci 4:142–148

    Article  Google Scholar 

  47. Gahlan P, Singh HR, Shankar R, Sharma N, Kumari A, Chawla V, Ahuja PS, Kumar S (2012) De novo sequencing and characterization of Picrorhiza kurrooa transcriptome at two temperatures showed major transcriptome adjustments. BMC Genom 13:126

    Article  CAS  Google Scholar 

  48. Zang QW, Wang CX, Li XY, Guo ZA, Jing RL, Zhao J, Chang XP (2010) Isolation and characterization of a gene encoding a polyethylene glycol-induced cysteine protease in common wheat. J Biosci 35:379–388

    Article  CAS  PubMed  Google Scholar 

  49. Koizumi M, Yamaguchi-Shinozaki K, Tsuji H, Shinozaki K (1993) Structure and expression of two genes that encode distinct drought inducible cysteine proteases in Arabidopsis thaliana. Gene 129:175–182

    Article  CAS  PubMed  Google Scholar 

  50. Schaffer MA, Fischer RL (1988) Analysis of mRNAs that accumulate in response to low temperature indicated a thiol protease gene in tomato. Plant Physiol 87:431–436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lid SE, Gruis D, Jung R, Lorentzen JA, Ananiev E, Chamberlin M, Niu X, Meeley R, Nichols S, Olsen OA (2002) The defective kernel1 (dek1) gene required for aleurone cell development in the endosperm of maize grains encodes a membrane protein of the calpain gene superfamily. Proc Natl Acad Sci USA 99:5460–5465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Okamoto T, Minamikawa T (1998) A vacuolar cysteine endopeptidase (SH-EP) that digests seed storage globulin: characterization, regulation of gene expression, and posttranslational processing. J Plant Physiol 152:675–682

    Article  CAS  Google Scholar 

  53. Lata C, Prasad M (2011) Role of DREBs in regulation of abiotic stress responses in plants. J Exp Bot 62(14):4731–4748

    Article  CAS  PubMed  Google Scholar 

  54. Takatsuji H (1999) Zinc-finger proteins: the classical zinc finger emerges in contemporary plant science. Plant Mol Biol 39:1073–1078

    Article  CAS  PubMed  Google Scholar 

  55. Tian ZD, Zhang Y, Liu J, Xie CH (2010) Novel potato C2H2-type zinc finger protein gene, StZFP1, which responds to biotic and abiotic stress, plays a role in salt tolerance. Plant Biol 12:689–697

    Article  CAS  PubMed  Google Scholar 

  56. Singh AK, Sharma V, Pal AK, Acharya V, Ahuja PS (2013) Genome-wide organization and expression profiling of the NAC transcription factor family in potato (Solanum tuberosum L.). DNA Res 20:403–423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Mao X, Chen S, Li A, Zhai C, Jing R (2014) Novel NAC transcription factor TaNAC67 confers enhanced multi-abiotic stress tolerances in Arabidopsis. PLoS ONE 9(1):e84359

    Article  PubMed  PubMed Central  Google Scholar 

  58. Tran LS, Nakashima K, Sakuma Y, Simpson SD, Fujita Y, Maruyama K, Fujita M, Seki M, Shinozaki K, Yamaguchi- Shinozaki K (2004) Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought responsive cis-element in the early responsive to dehydration stress 1 promoter. Plant Cell 16:2481–2498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Iskandar HM, Widyaningrum D, Suhandono S (2014) Cloning and characterization of P5CS1 and P5CS2 genes from Saccharum officinarum L. under drought stress. J Trop Crop Sci 1(1):23–30

    Google Scholar 

Download references

Acknowledgements

We are thankful to the Project Director, National Research Centre on Plant Biotechnology for providing the necessary facilities to carry out this work. This research work was financially supported by the National Agricultural Innovation Project of Indian Council of Agricultural Research, New Delhi. The financial assistance from ICAR-National Innovations in Climate Resilient Agriculture in the form of salary of Research Associate during the data analysis and manuscript preparation stage is duly acknowledged. Special thanks are due to Director, Indian Agricultural Research Institute, New Delhi for providing plant growth chamber facilities at the National Phytotron Facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jasdeep Chatrath Padaria.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLS 100 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, R., Verma, O.P. & Padaria, J.C. Transcript profiling and gene expression analysis under drought stress in Ziziphus nummularia (Burm.f.) Wright & Arn.. Mol Biol Rep 45, 163–174 (2018). https://doi.org/10.1007/s11033-018-4149-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-018-4149-0

Keywords

Navigation