Skip to main content
Log in

Selection of housekeeping genes for gene expression studies on the development of fruit bearing shoots in Chinese jujube (Ziziphus jujube Mill.)

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Chinese jujube (Ziziphus jujube Mill.) is important economically for its fruit and also bears attractive medical value. Its flower development concurs with the growth of current fruit bearing shoots (FBSs). However, events involved in current FBSs, including FBS differentiation, flower development, and reliable housekeeping gene are still unknown. In this study, the morphology of FBS development and floral formation were examined and expression profiles of several potential internal control genes was determined. These included genes encoding proteins involved in protein translation (translation elongation factor 1α, ZjEF1), protein folding (cyclophilin, ZjCyP) or degradation (ubiquitin extension protein, ZjUBQ), and proteins involved in the structure of the cytoskeleton (β-actin, ZjACT) or nucleosome (histone3, ZjH3). Our results showed that the floral development in early growing FBSs (less than 20 mm in length) or shoot apices was not complete. Among ZjACT, ZjEF1, ZjCyP, ZjUBQ, and ZjH3, ZjH3 was the most suitable housekeeping gene to evaluate FBS development, based on their expression in early growing FBSs, shoot apices, and different organs. These results will be useful for further molecular mechanism study about FBS development in Chinese jujube.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Altschul SF, Madden TL, Schaffer AA et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402. doi:10.1093/nar/25.17.3389

    Article  CAS  PubMed  Google Scholar 

  2. Brunner AM, Yakovlev IA, Strauss SH (2004) Validating internal controls for quantitative plant gene expression studies. BMC Plant Biol 4:14. doi:10.1186/1471-2229-4-14

    Article  PubMed  Google Scholar 

  3. Burton RA, Shirley NJ, King BJ et al (2004) The CesA gene family of barley, quantitative analysis of transcripts reveals two groups of co-expressed genes. Plant Physiol 134:224–236. doi:10.1104/pp.103.032904

    Article  CAS  PubMed  Google Scholar 

  4. Czechowski T, Stitt M, Altmann T et al (2005) Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol 139:5–17. doi:10.1104/pp.105.063743

    Article  CAS  PubMed  Google Scholar 

  5. Dean JD, Goodwin PH, Hsiang T (2002) Comparison of relative RT-PCR and northern blot analyses to measure expression of b-1, 3-glucanase in Nicotiana benthamiana infected with Colletotrichum destructivum. Plant Mol Biol Rep 20:347–356. doi:10.1007/BF02772122

    Article  CAS  Google Scholar 

  6. Goncalves S, Cairney J, Maroco J et al (2005) Evaluation of control transcripts in real-time RT-PCR expression analysis during maritime pine embryogenesis. Planta 222:556–563. doi:10.1007/s00425-005-1562-0

    Article  CAS  PubMed  Google Scholar 

  7. Gonzalez-Verdejo CI, Die JV, Nadal S et al (2008) Selection of housekeeping genes for normalization by real-time RT-PCR: analysis of Or-MYB1 gene expression in Orobanche ramose development. Anal Biochem 379(2):176–181. doi:10.1016/j.ab.2008.05.003

    Article  CAS  PubMed  Google Scholar 

  8. Grbic V, Bleecker AB (2000) Axillary meristem development in Arabidopsis thaliana. Plant J 21:215–223. doi:10.1046/j.1365-313x.2000.00670.x

    Article  CAS  PubMed  Google Scholar 

  9. Jain M, Nijhawan A, Tyagi AK et al (2006) Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR. Biochem Biophys Res Commun 345:646–651. doi:10.1016/j.bbrc.2006.04.140

    Article  CAS  PubMed  Google Scholar 

  10. Kim BR, Nam HY, Kim SU et al (2003) Normalization of reverse transcription quantitative-PCR with housekeeping genes in rice. Biotechnol Lett 25:1869–1872. doi:10.1023/A:1026298032009

    Article  CAS  PubMed  Google Scholar 

  11. Kotoda N, Wada M, Komori S et al (2000) Expression pattern of homologues of floral meristem identity genes LFY and AP1 during flower development in apple. J Am Soc Hortic Sci 125:398–403

    CAS  Google Scholar 

  12. Kotoda N, Wada M, Kusaba S et al (2002) Overexpression of MdMADS5, an APETALA1-like gene of apple, causes early flowering in transgenic Arabidopsis. Plant Sci 162:679–687. doi:10.1016/S0168-9452(02)00024-9

    Article  CAS  Google Scholar 

  13. Mimida N, Kidou S, Kotoda N (2007) Constitutive expression of two apple (Malus × domestica Borkh.) homolog genes of LIKE HETEROCHROMATIN PROTEIN1 affects flowering time and whole-plant growth in transgenic Arabidopsis. Mol Genet Genomics 278:295–305. doi:10.1007/s00438-007-0250-0

    Article  CAS  PubMed  Google Scholar 

  14. Nicot N, Hausman J-F, Hoffmann L et al (2005) Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress. J Exp Bot 56:2907–2914. doi:10.1093/jxb/eri285

    Article  CAS  PubMed  Google Scholar 

  15. Qu ZZ, Wang YH, Zhou JZ (1963) A preliminary report on the observation of flower bud differentiation of Chinese jujube (in chinese). J Hebei Agr Univ 2:7–15

    Google Scholar 

  16. Qu ZZ, Wang YH, Zhou JZ (1981) Observasion of flower bud differentiation of Chinese jujube (second report) (in chinese). J Hebei Agr Univ 4:86–102

    Google Scholar 

  17. Reid KE, Olsson N, Schlosser J et al (2006) An optimized grapevine RNA isolation procedure and statistical determination of reference genes for real-time RT-PCR during berry development. BMC Plant Biol 6:27. doi:10.1186/1471-2229-6-27

    Article  PubMed  Google Scholar 

  18. Schmittgen TD, Zakrajsek BA (2000) Effect on experimental treatment on housekeeping gene expression: validation by realtime, quantitative RT-PCR. J Biochem Biophys Methods 46:69–81. doi:10.1016/S0165-022X(00)00129-9

    Article  CAS  PubMed  Google Scholar 

  19. Sturzenbaum SR, Kille P (2001) Control genes in quantitative molecular biological techniques: the variability of invariance. Comp Biochem Physiol B 130:281–289. doi:10.1016/S1096-4959(01)00440-7

    Article  CAS  PubMed  Google Scholar 

  20. Thellin O, Zorzi W, Lakaye B et al (1999) Housekeeping genes as internal standards: use and limits. J Biotechnol 75:291–295. doi:10.1016/S0168-1656(99)00163-7

    Article  CAS  PubMed  Google Scholar 

  21. Thomas C, Meyer D, Wolff M et al (2003) Molecular characterization and spatial expression of the sunflower ABP1 gene. Plant Mol Biol 52:1025–1036. doi:10.1023/A:1025482432486

    Article  CAS  PubMed  Google Scholar 

  22. Volkov RA, Panchuk II, Schoffl F (2003) Heat-stress-dependency and developmental modulation of gene expression: the potential of house-keeping genes as internal standards in mRNA expression profiling using real-time RT-PCR. J Exp Bot 54:2343–2349. doi:10.1093/jxb/erg244

    Article  CAS  PubMed  Google Scholar 

  23. Warrington JA, Nair A, Mahadevappa M et al (2000) Comparison of human adult and fetal expression and identification of 535 housekeeping/maintenance genes. Physiol Genomics 2:143–147

    CAS  PubMed  Google Scholar 

  24. Zhu C (1963) The application of PAS reaction as a stain technique in plant histology (in chinese). Acta Bot Sin 11:155–166

    Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Shanxi Natural Science Foundation Committee of China (No. 20051081 and 20080011062-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiu-fen Cao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, Hf., Meng, Yp., Cui, Gm. et al. Selection of housekeeping genes for gene expression studies on the development of fruit bearing shoots in Chinese jujube (Ziziphus jujube Mill.). Mol Biol Rep 36, 2183–2190 (2009). https://doi.org/10.1007/s11033-008-9433-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-008-9433-y

Keywords

Navigation