Skip to main content
Log in

Porcine EEF1A1 and EEF1A2 genes: genomic structure, polymorphism, mapping and expression

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Eukaryotic translation elongation factor 1 alpha (EEF1A) plays a key role in protein synthesis. In higher vertebrates EEF1A occurs in two isoforms, EEF1A1 and EEF1A2, encoded by distinct genes. The purpose of this study was to compare the two porcine genes as for the genomic sequence, gene organization and mRNA expression in different tissues, as well as to search for polymorphism and chromosomal assignment. Standard methods of DNA and mRNA analysis were used. We determined the complete genomic sequence of the porcine EEF1A1 and EEF1A2 genes. The two genes differ in the lengths of transcription units (3102 and 8588 bp, respectively), but have similar genomic organization and their coding sequences are highly similar (78 % identity of coding sequences and 92.4 % identity of amino acid sequences). Several polymorphisms in the two genes were detected. EEF1A1 and EEF1A2 were mapped to SSC1p11.1 and SSC17q23.3, respectively. mRNA of EEF1A1 was expressed in all studied tissues (the highest expression was in 44-day fetal muscle and low expression in adult liver and brain), while EEF1A2 was expressed only in skeletal-muscle, tongue, heart, diaphragm and brain tissues. EEF1A2 was not expressed in fetal muscle tissue (44 days). In this paper results are provided on genomic sequences, genomic organization, polymorphism, chromosomal assignment and spatial and temporal expressions of the porcine EEF1A1 and EEF1A2 genes. Novel polymorphisms were described in both genes. Porcine EEF1A2 was studied for the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Knudsen SM, Frydenberg J, Clark BFC, Leffers H (1993) Tissue-dependent variation in the expression of elongation factor-1α isoforms: isolation and characterisation of a cDNA encoding a novel variant of human elongation-factor 1α. Eur J Biochem 215:549–554. doi:10.1111/j.1432-1033.1993.tb18064.x

    Article  CAS  PubMed  Google Scholar 

  2. Riis B, Rattan SIS, Clark BFC, Merrick WC (1990) Eukaryotic protein elongation factors. Trends Biochem Sci 15:420–424. doi:10.1016/0968-0004(90)90279-K

    Article  PubMed  Google Scholar 

  3. Bischoff C, Kahns S, Lund A, Jørgensen HF, Præstegaard M, Clark BFC, Leffers H (2000) The human elongation factor 1 A-2 gene (EEF1A2): complete sequence and characterization of gene structure and promoter activity. Genomics 68:63–70. doi:10.1006/geno.2000.6271

    Article  CAS  PubMed  Google Scholar 

  4. Scaggiante B, Manzini G (2009) EEF1A1 (eukaryotic translation elongation factor 1 alpha 1). Atlas Genet Cytogenet Oncol Haematol. URL: http://AtlasGeneticsOncology.org/Genes/EEF1A1ID40407ch6q13.html

  5. Noubir S, Lee JM (2008) EEF1A2 (eukaryotic translation elongation factor 1 alpha 2). Atlas Genet Cytogenet Oncol Haematol. URL: http://AtlasGeneticsOncology.org/Genes/EEF1A2ID40408ch20q13.html

  6. Chambers DM, Peters J, Abbott CM (1998) The lethal mutation of the mouse wasted (wst) is a deletion that abolishes expression of a tissue-specific isoform of translation elongation factor 1α, encoded by the Eef1a2 gene. Proc Natl Acad Sci USA 95:4463–4468. doi:10.1073/pnas.95.8.4463

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Kahns S, Lund A, Kristensen P, Knudsen CR, Clark BFC, Cavallius J, Merrick WC (1998) The elongation factor 1 A-2 isoform from rabbit: cloning of the cDNA and characterization of the protein. Nucleic Acids Res 26:1884–1890. doi:10.1093/nar/26.8.1884

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Soares DC, Barlow PN, Newbery HJ, Porteous DJ, Abbott CM (2009) Structural models of human eEF1A1 and eEF1A2 reveal two distinct surface clusters of sequence variation and potential differences in phosphorylation. PLoS ONE 4:e6315. doi:10.1371/journal.pone.0006315

    Article  PubMed Central  PubMed  Google Scholar 

  9. Soares DC, Abbott C (2013) Highly homologous eEF1A1 and eEF1A2 exhibit differential post-translational modification with significant enrichment around localised sites of sequence variation. Biol Direct 8:29. doi:10.1186/1745-6150-8-29

    Article  PubMed Central  PubMed  Google Scholar 

  10. Lee S, Francoeur A-M, Liu S, Wang E (1992) Tissue-specific expression in mammalian brain, heart, and muscle of S1, a member of the elongation factor-1α gene family. J Biol Chem 267:24064–24068

    CAS  PubMed  Google Scholar 

  11. Lee S, Wolfraim LA, Wang E (1993) Differential expression of S1 and elongation factor-1α during rat development. J Biol Chem 268:24453–24459

    CAS  PubMed  Google Scholar 

  12. Geldermann H, Müller E, Moser G, Reiner G, Bartenschlager H, Cepica S, Stratil A, Kuryl J, Moran C, Davoli R, Brunsch C (2003) Genome-wide linkage and QTL mapping in porcine F2 families generated from Pietrain, Meishan and Wild Boar crosses. J Anim Breed Genet 120:363–393. doi:10.1046/j.0931-2668.2003.00408.x

    Article  CAS  Google Scholar 

  13. Green P, Falls K, Crooks S (1990) Documentation for CRI-MAP, Version 2.4. Washington University School of Medicine, St. Louis

  14. Yerle M, Pinton P, Robic A, Alfonso A, Palvadeau Y, Delcros C, Hawken R, Alexander L, Beattie C, Schook L, Milan D, Gellin J (1998) Construction of a whole-genome radiation hybrid panel for high-resolution gene mapping in pigs. Cytogenet Cell Genet 82:182–188. doi:10.1159/000015095

    Article  CAS  PubMed  Google Scholar 

  15. Hawken RJ, Murtaugh J, Flickinger GH, Yerle M, Robic A, Milan D, Gellin J, Beattie CW, Schook LB, Alexander LJ (1999) A first-generation porcine whole-genome radiation hybrid map. Mamm Genome 10:824–830. doi:10.1007/s003359901097

    Article  CAS  PubMed  Google Scholar 

  16. Bílek K, Knoll A, Stratil A, Svobodová K, Horák P, Bechyňová R, Van Poucke M, Peelman LJ (2008) Analysis of mRNA expression of CNN3, DCN, FBN2, POSTN, SPARC and YWHAQ genes in porcine foetal and adult skeletal muscles. Czech J Anim Sci 53:181–186

    Google Scholar 

  17. Svobodová K, Bílek K, Knoll A (2008) Verification of reference genes for relative quantification of gene expression by real-time reverse transcription PCR in the pig. J Appl Genet 49:263–265. doi:10.1007/BF03195623

    Article  PubMed  Google Scholar 

  18. Nesvadbová M, Knoll A (2011) The evaluation of reference genes for gene expression studies in pig muscle tissue with real-time PCR. Czech J Anim Sci 56:213–216

    Google Scholar 

  19. Groenen MAM, Archibald AL, Uenishi H, Tuggle CK, Takeuchi Y, Rothschild MF et al (2012) Analyses of pig genomes provide insight into porcine demography and evolution. Nature 491:393–398. doi:10.1038/nature11622

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Beeckmann P, JrJ Schröffel, Moser G, Bartenschlager H, Reiner G, Geldermann H (2003) Linkage and QTL mapping for Sus scrofa chromosome 1. J Anim Breed Genet 120(Suppl. 1):1–10. doi:10.1046/j.0931-2668.2003.00418.x

    Article  CAS  Google Scholar 

  21. Pierzchala M, Cieslak D, Reiner G, Bartenschlager H, Moser G, Geldermann H (2003) Linkage and QTL mapping for Sus scrofa chromosome 17. J Anim Breed Genet 120(Suppl. 1):132–137. doi:10.1046/j.0931-2668.2003.00434.x

    Article  CAS  Google Scholar 

  22. Alexander LJ, Troyer DL, Rohrer GA, Smith TPL, Schook LB, Beattie CW (1996) Physical assignments of 68 porcine cosmid and lambda clones containing polymorphic microsatellites. Mamm Genome 7:368–372. doi:10.1007/s003359900106

    Article  CAS  PubMed  Google Scholar 

  23. Ann DK, Moutsatsos IK, Nakamura T, Lin HH, Mao P-L, Lee M-J, Chin S, Liem RKH, Wang E (1991) Isolation and characterization of the rat chromosomal gene for a polypeptide (pS1) antigenically related to statin. J Biol Chem 266:10429–10437

    CAS  PubMed  Google Scholar 

  24. Lee S, Ann DK, Wang E (1994) Cloning of human and mouse brain cDNAs coding for S1, the second member of the mammalian elongation factor-1 alpha gene family: analysis of a possible evolutionary pathway. Biochem Biophys Res Commun 203:1371–1377. doi:10.1006/bbrc.1994.2336

    Article  CAS  PubMed  Google Scholar 

  25. Lund A, Knudsen SM, Vissing H, Clark B, Tommerup N (1996) Assignment of human elongation factor 1α genes: EEF1A1 maps to chromosome 6q14 and EEF1A2 to 20q13.3. Genomics 36:359–361. doi:10.1006/geno.1996.0475

    Article  CAS  PubMed  Google Scholar 

  26. Goureau A, Yerle M, Schmitz A, Riquet J, Milan D, Pinton P, Frelat G, Gellin J (1996) Human and porcine correspondence of chromosome segments using bidirectional chromosome painting. Genomics 36:252–262. doi:10.1006/geno.1996.0460

    Article  CAS  PubMed  Google Scholar 

  27. Meyers SN, Rogatcheva MB, Larkin DM, Yerle M, Milan D, Hawken RJ, Schook LB, Beever JE (2005) Piggy-BACing the human genome II. A high-resolution, physically anchored, comparative map of the porcine autosomes. Genomics 86:739–752. doi:10.1016/j.ygeno.2005.04.010

    Article  PubMed  Google Scholar 

  28. Wang HL, Wang H, Zhu ZM, Yang SL, Feng ST, Li K (2006) Molecular characterization and expression patterns of porcine eukaryotic elongation factor 1 A. Asian-Aust J Anim Sci 19:953–957

    Article  CAS  Google Scholar 

  29. Zhao S-H, Nettleton D, Liu W, Fitzsimmons C, Ernst CW, Raney NE, Tuggle CK (2003) Complementary DNA macroarray analyses of differential gene expression in porcine fetal and postnatal muscle. J Anim Sci 81:2179–2188

    CAS  PubMed  Google Scholar 

  30. Bérard J, Kalbe C, Lösel D, Tuchscherer A, Rehfeldt C (2011) Potential sources of early-postnatal increase in myofibre number in pig skeletal muscle. Histochem Cell Biol 136:217–225. doi:10.1007/s00418-011-0833-z

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Marie Datlová and RNDr. Martina Pinková for technical assistance. We would like to thank Drs. Martine Yerle and Denis Milan (INRA, Castanet-Tolosan, France) for providing the SCH and IMpRH panels, and Drs. Patrick Chardon and Karine Hugot (INRA, Jouy-en-Josas, France) for the BAC library screening. DNA samples from Meishan pigs were provided by Professor Alan L. Archibald (Roslin Inst., Midlothian, Scotland, UK). The project was supported by the Czech Science Foundation (grants no. 523/06/1302 and 523/09/0844), the Institute of Animal Physiology and Genetics ASCR, v.v.i. (RVO: 67985904), the CEITEC Project CZ.1:05/1:1:00/02.0068, and the Ministry of Education, Youth and Sports of the Czech Republic (project no. MSM 6046070901).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonín Stratil.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 51 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Svobodová, K., Horák, P., Stratil, A. et al. Porcine EEF1A1 and EEF1A2 genes: genomic structure, polymorphism, mapping and expression. Mol Biol Rep 42, 1257–1264 (2015). https://doi.org/10.1007/s11033-015-3866-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-015-3866-x

Keywords

Navigation